SERS-active substrates based on embedded Ag nanoparticles in c-Si: modeling, technology, application
Ermina A. A.
1, Solodovchenko N. S.
2, Prigoda K. V.
1,3, Levitskii V. S.
4, Pavlov S. I.
1, Zharova Yu. A.
11Ioffe Institute, St. Petersburg, Russia
2ITMO University, St. Petersburg, Russia
3Peter the Great Saint-Petersburg Polytechnic University, St. Petersburg, Russia
4R&D Center of Thin Film Technologies in Energetics under the Ioffe Institute LLC, St. Petersburg, Russia
Email: annaermina97@gmail.com, n.solodovchenko@metalab.ifmo.ru, kristina_prigoda@mail.ru, lev-vladimir@yandex.ru, Pavlov_sergey@mail.ioffe.ru, piliouguina@mail.ioffe.ru
A simple method for obtaining SiO2 : Ag : Si and Ag : Si hybrid nanostructures is presented. High-temperature annealing of an Ag island film on the surface of c-Si makes it possible to preserve the plasmonic properties of Ag nanoparticles and protect them from external influences by coating them with a thermally grown layer of SiO2. The calculation of the electric field strength distribution in the structure with embedded Ag nanoparticles in c-Si demonstrates the presence of intrinsic "hot spots" at the corners of the nanoparticles, which leads to a maximum enhancement factor (~106) of Raman scattering. A numerical calculation of the dependence of the spectral position of a localized plasmon resonance on the geometry of structures can serve as a basis for their design in the future. Surface-enhanced Raman scattering showed reliable detection of the methyl orange from an aqueous solution at a concentration of <10-5 M. Keywords: SERS, Ag nanoparticles, c-Si, methyl orange, localized plasmon resonance. DOI: 10.61011/SC.2023.04.56420.07k
- J. Langer, et. al. ACS Nano, 149 (1), 28 (2020). https://doi.org/10.1021/acsnano.9b04224
- R. Wu, T. Mathieu, C.J. Storey, Q. Jin, J. Collins, L.T. Canham, A. Kaplan. Adv. Optical Mater., 9, 2002119 (2021). https://doi.org/10.1002/adom.202002119
- C. Zong, M. Xu, L.-J. Xu, T. Wei, X. Ma, X.-S. Zheng, R. Hu, B. Ren. Chem. Rev., 118 (10), 4946 (2018). https://doi.org/10.1021/acs.chemrev.7b00668
- L. Xie, H. Zeng, J. Zhu, Z. Zhang, W. Xia. Nano Res., 15, 4374 (2022). https://doi.org/10.1007/s12274-021-4017-4
- Q. Zou, S. Mo, X. Pei, Y. Wang, T. Xue, M. Mayilamu, G. Qin. AIP Advances, 8, 085302 (2018). https://doi.org/10.1063/1.5039600
- J. Wang, Z. Jia, C. Lv. Opt. Express, 26, 6507 (2018). https://doi.org/10.1364/OE.26.006507
- A.A. Ermina, N.S. Solodovchenko, K.V. Prigoda, V.S. Levitskii, V.O. Bolshakov, M.Yu. Maximov, Yu.M. Koshtyal, S.I. Pavlov, V.A. Tolmachev, Yu.A. Zharova. Appl. Surf. Sci., 608, 155146 (2023). https://doi.org/10.1016/j.apsusc.2022.155146
- Z. Zhang, J. Wang, K.B. Shanmugasundaram, B. Yeo, A. Moller, A. Wuethrich, L.L. Lin, M. Trau. Small, 16, 1905614 (2020). https://doi.org/10.1002/smll.201905614
- S. Bamrungsap, A. Treetong, C. Apiwat, T. Wuttikhun, T. Dharakul. Microchim. Acta, 183, 249 (2016). https://doi.org/10.1007/s00604-015-1639-9
- W. Kim, S.H. Lee, J.H. Kim, Y.J. Ahn, Y.-H. Kim, J.S. Yu, S. Choi. ACS Nano, 12 (7), 7100 (2018). https://doi.org/10.1021/acsnano.8b02917
- D. Zhang, P. Liang, Z. Yu, J. Xia, D. Ni, D. Wang, Y. Zhou, Y. Cao, J. Chen, J. Chen, S. Jin. J. Hazard. Mater., 382, 121023 (2020). https://doi.org/10.1016/j.jhazmat.2019.121023
- W. Fan, S. Yang, Y. Zhang, B. Huang, Z. Gong, D. Wang, M. Fan. ACS Sensors, 5 (11), 3599 (2020). https://doi.org/10.1021/acssensors.0c01908
- T. Liyanage, A. Rael, S. Shaffer, S. Zaidi, J.V. Goodpaster, R. Sardar. Analyst, 143, 2012 (2018). https://doi.org/10.1039/C8AN00008E
- H. Sun, X. Li, Z. Hu, C. Gu, D. Chen, J. Wang, B. Li, T. Jiang, X. Zhou. Appl. Surf. Sci., 556, 149748 (2021). https://doi.org/10.1016/j.apsusc.2021.149748
- X. He, X. Zhou, Y. Liu, X. Wang. Sensors Actuators B: Chem., 311, 127676 (2020). https://doi.org/10.1016/j.snb.2020.127676
- Z. Deng, X. Chen, Y. Wang, E. Fang, Z. Zhang, X. Chen. Anal. Chem., 87 (1), 633 (2015). https://doi.org/10.1021/ac503341g
- J. Chen, Y. Huang, P. Kannan, L. Zhang, Z. Lin,J. Zhang, T. Chen, L. Guo. Anal. Chem., 88 (4), 2149 (2016). https://doi.org/10.1021/acs.analchem.5b03735
- E. Galopin, J. Niedzi ka-Jonsson, A. Akjouj, Y. Pennec, B. Djafari-Rouhani, A. Noual, R. Boukherroub, S. Szunerits. J. Phys. Chem. C, 114 (27), 11769 (2010). https://doi.org/10.1021/jp1023839
- K. Kneipp, M. Moskovits, H. Kneipp. Surface-Enhanced Raman Scattering: Physics and Applications (Springer Verlag Berlin--Heidelberg, 2006). https://doi.org/10.1007/3-540-33567-6
- M.-C. Wu, M.-P. Lin, S.-W. Chen, P.-H. Lee, J.-H. Li, W.-F. Su. RSC Advances, 4, 10043 (2014). https://doi.org/10.1039/C3RA45255G
- E. Galopin, A. Noual, J. Niedzi ka-Jonsson, A. Akjouj, Y. Pennec, B. Djafari-Rouhani, A. Noual, R. Boukherroub, S. Szunerits. J. Phys. Chem. C, 113, 15921 (2009). https://doi.org/10.1021/jp905154z
- R.P. Van Duyne (ed. by C.B. Moore). (N. Y., Academic Press, 1979) p. 101
- P. Hildebrandt, M. Stockburger. J. Phys. Chem., 88, 5935 (1984). https://doi.org/10.1021/j150668a038
- V.A. Tolmachev, E.V. Gushchina, I.A. Nyapshaev, Yu.A. Zharova. Thin Sol. Films, 139352 (2022). https://doi.org/10.1016/j.tsf.2022.139352
- Y. Zharova, A. Ermina, S. Pavlov, Y. Koshtyal, V. Tolmachev. Phys. Status Solidi A, 216, 1900318 (2019). https://doi.org/10.1002/pssa.201900318
- U. Kreibig, M. Vollmer. Optical Properties of Metal Clusters (Springer Series in Materials Science, 1995). doi:10.1007/978-3-662-09109-8
- J. Chowdhury, M. Ghosh. J. Colloid Interface Sci., 277, 121 (2004). https://doi.org/10.1016/j.jcis.2004.04.030
- A. Zarei, A. Shafiekhani. Mater. Chem. Phys., 242, 122559 (2020). https://doi.org/10.1016/j.matchemphys.2019.122559
- M.Z. Si, Y.P. Kang, Z.G. Zhang. Appl. Surf. Sci., 255 (11), 6007 (2009). https://doi.org/10.1016/j.apsusc.2009.01.055
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.