Physics of the Solid State
Volumes and Issues
Magnetic structure of Co0.8-xMnxZn0.2Fe2O4 nanoparticles (x=0.6, 0.4 and 0.2) promising for biomedical applications
Kamzin A. S.1, Semenov V. G.2, Al-Omari I. A.3, Narayanaswamy V.4, Issa B.4,5,6
1Ioffe Institute, St. Petersburg, Russia
2St. Petersburg State University, St. Petersburg, Russia
3Department of Physics, Sultan Qaboos University, Muscat, Sultanate of Oman
4Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
5Department of Medical Diagnostic Imaging, College of Health Sciences, University of Sharjah, United Arab Emirates
6Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, Turkey
Email: ASKam@mail.ioffe.ru

PDF
Magnetic nanoparticles (MNP) of ferrite Co0.8-xMnxZn0.2Fe2O4 (x=0.6, 0.4 and 0.2) were synthesized by co-deposition. The structural, microstructural, magnetic and ultrathin properties of the obtained particles were investigated by X-ray diffraction and Mossbauer spectroscopy. The nanoparticle sizes calculated from radiographs at x=0.6, 0.4 and 0.2 are 15.2, 10.2 and 10.3 nm, respectively. The influence of the amount of Mn ions introduced on the properties of synthesized particles has been studied. The analysis of experimental Mossbauer spectra showed that the small size of the MNP leads to a significant increase in the effects of dimensionality and the influence of the surface on the magnetic structure of the surface layer. The Mossbauer studies, for the first time without the use of external magnetic fields, on the example of MNP spinel ferrites Co0.8-xMnxZn0.2Fe2O4, found that inside the particle the magnetic moments are ordered collinearly, whereas in the surface layer the moments are oriented at an angle to each other (canting structure). Keywords: spinel ferrites, Mossbauer spectroscopy, superparamagnetism, materials for biomedicine. DOI: 10.61011/PSS.2023.08.56586.122
  1. G. Sharma, A. Kumar, P. Dhiman. Ferrites --- Nanostructures with Tunable Properties and Diverse Application. Materials Research Forum LLC, USA (2021). 374 p
  2. X. Liu, Y. Zhang, Y. Wang, W. Zhu, G. Li, X. Ma, Y. Zhang, S. Chen, S. Tiwari, K. Shi, S. Zhang, H. M. Fan, Y. X. Zhao, X.-J. Liang. Theranostics 10, 8, 3793 (2020)
  3. A. Rajan, N.K. Sahu. J. Nanopart. Res. 22, 11, 319 (2020)
  4. B. Issa, I.M. Obaidat. In: Magnetic Resonance Imaging / Ed. L. Manchev. InTechOpen (2019). Ch. 2. http://dx.doi.org/10.5772/intechopen.84649
  5. B. Pacakova, S. Kubickova, A. Reznickova, D. Niznansky, J. Vejpravova. In: Magnetic Spinels --- Synthesis, Properties and Applications / Ed. M.S. Seehra. InTechOpen (2017). Ch. 1, pp. 4-29. https://www.intechopen.com/chapters/52889
  6. Y. Xiao, J. Du. J. Mater. Chem. B 8, 3, 354 (2020)
  7. S. Amiri, H. Shokrollahi. Mater. Sci. Eng. C 33, 1, 1 (2013). https://doi.org/10.1016/j.msec.2012.09.003
  8. K.K. Kefeni, T.A.M. Msagati, T.T. Nkambule, B.B. Mamba. Mater. Sci. Eng. C 107, 110314 (2020). https://doi.org/10.1016/j.msec.2019.110314
  9. A. Manohar, D.D. Geleta, C. Krishnamoorthi, J. Lee. Ceram. Int. 46, 18, 28035 (2020)
  10. M. Popa, P. Bruna, D. Crespo, J.M. Calderon Moreno. J. Am. Ceram. Soc. 91, 2488 (2008). https://ceramics.onlinelibrary.wiley.com/doi/abs/10.1111/ j.1551-2916.2008.02501.x
  11. O. Perales-Perez, Y. Cedeno-Mattei. In: Magnetic Spinels --- Synthesis, Properties and Applications / Ed. M.S. Seehra. InTechOpen (2017). Ch. 3. P. 51-72. https://www.intechopen.com/chapters/53689
  12. F. Nakagomi, P.E.N. de Souza, T.J. Castro, V.K. Garg, A.C. Oliveira, F.C.E. Silva, A. Franco Jr., P.C. Morais, S.W. da Silva. J. Alloys. Compd. 842, 155751 (2020)
  13. F. Sharifianjazi, M. Moradi, N. Parvin, A. Nemati, A.J. Rad, N. Sheysi, A. Abouchenari, A. Mohammadi, S. Karbasi, Z. Ahmadi, A. Esmaeilkhanian, M. Irani, A. Pakseresht, S. Sahmani, M.S. Asl. Ceram. Int. 46, 11, Part B, 18391 (2020)
  14. A.S. Kamzin, I.M. Obaidat, V.G. Semenov, V. Narayanaswamy, I.A. Al-Omari, B. Issa, I.V. Buryanenko. FTT 64, 6, 712 (2022). https://journals.ioffe.ru/articles/52406 [A.S. Kamzin, I.M. Obaidat, V.G. Semenov, V. Narayanaswamy, I.A. Al-Omari, B. Issa, I.V. Buryanenko. Phys. Solid State 64, 6, 698 (2022). https://journals.ioffe.ru/articles/53838]
  15. M. Albino, E. Fantechi, C. Innocenti, A. Lopez-Ortega, V. Bonanni, G. Campo, F. Pineider, M. Gurioli, P. Arosio, T. Orlando, G. Bertoni, C. De Julian Fernandez, A. Lascialfari, C. Sangregorio. J. Phys. Chem. C 123, 10, 6148 (2019). https://doi.org/10.1021/acs.jpcc.8b10998
  16. V. Mameli, A. Musinu, A. Ardu, G. Ennas, D. Peddis, D. Niznansky, C. Sangregorio, C. Innocenti, N.T.K. Thanh, C. Cannas. Nanoscale 8, 19, 10124 (2016). https://pubs.rsc.org/en/content/articlelanding/2016/nr/ c6nr01303a
  17. A. Ramakrishna, N. Murali, T.W. Mammo, K. Samatha, V. Veeraiah. Physica B: Condens. Matter 534, 134 (2018). https://doi.org/10.1016/j.physb.2018.01.033
  18. T. Dippong, O. Cadar, E.A. Levei, I.G. Deac. J. Magn. Magn Mater. 498, 166168 (2020). https://doi.org/10.1016/j.jmmm.2019.166168
  19. A.S. Kamzin, D.S. Nikam, S.H. Pawar. Phys. Solid State 59, 1, 156 (2017). https://link.springer.com/article/10.1134/S1063783417010127.
  20. V. Narayanaswamy, I.A. Al-Omari, A.S. Kamzin, B. Issa, H.O. Tekin, H. Khourshid, H. Kumar, A. Mallya, S. Sambasivam, I.M. Obaidat. Nanomater. 11, 5, 1231 (2021). https://doi.org/10.3390/nano11051231
  21. B. Aslibeiki, P. Kameli, H. Salamati, G. Concas, M.S. Fernandez, A. Talone, G. Muscas, D. Peddis. Beilstein J. Nanotechnol. 10, 856 (2019). https://www.beilstein-journals.org/bjnano/articles/10/86
  22. R. Roongtao, R. Baitahe, N. Vittayakorn, P. Seeharaj, W.C. Vittayakorn. Ferroelectrics 459, 1, 119 (2014). https://www.tandfonline.com/doi/abs/10.1080/00150193.2013. 849175
  23. S.P. Yadav, S.S. Shinde, P. Bhatt, S.S. Meena, K.Y. Rajpure. J. Alloys Compd. 646, 550 (2015). http://dx.doi.org/10.1016/j.jallcom.2015.05.270
  24. A. Farheen, R. Singh. Integrated Ferroelectrics 203, 1, 91 (2019). https://doi.org/10.1080/10584587.2019.1674960
  25. M.F.A. Khan, M.D.F. Ahammad, N.H. Khan, N. Ahmed. Austin J. Pharmacol Therap. 9, 5, 1150 (2021)
  26. P. Thakur, D. Chahar, S. Taneja, N. Bhalla, A. Thakur. Ceram. Int. 46, 10, Part B, 15740 (2020). https://doi.org/10.1016/j.ceramint.2020.03.287
  27. F. Khan, B.B. Lahiri, S. Ranoo, J. Philip. Ceram. Int. 48, 22, 33462 (2022). https://doi.org/10.1016/j.ceramint.2022.07.291
  28. E. Rezlescu, L. Sachelarie, P.D. Popa, N. Rezlescu. IEEE Trans. Magn. 36, 6, 3692 (2000). https://ieeexplore.ieee.org/document/914348
  29. I. Sharifi, H. Shokrollahi. J. Magn. Magn. Mater. 334, 36 (2013). https://doi.org/10.1016/j.jmmm.2013.01.021
  30. M. Hashim, S.S. Meena, R.K. Kotnala, S.E. Shirsath, P. Bhatt, S. Kumar, E. Sentu rk, R. Kuma, N. Gupta, Alimuddin. J. Magn. Magn. Mater. 360, 21 (2014). http://dx.doi.org/10.1016/j.jmmm.2014.01.047
  31. M. Hashim, S.S. Meena, D. Ravinder, R. Kumar, P. Bhatt, S. Kumar, Alimuddin. AIP Conf. Proc. 1591, 1533 (2014)
  32. G. Kumar, R.K. Kotnala, J. Shah, V. Kumar, A. Kumar, P. Dhiman, M. Singh. Phys. Chem. Chem. Phys. 19, 25, 16669 (2017)
  33. M.A. Ahmed, H.E. Hassan, M.M. Eltabey, K. Latka, T.R. Tatarchuk. Physica B: Phys. Condens. Matter 530, 195 (2018). https://doi.org/10.1016/j.physb.2017.10.125
  34. H. Mahajan, S.K. Godara, A.K. Srivastava. J. Alloys. Compd. 896, 162966 (2022). https://doi.org/10.1016/j.jallcom.2021.162966
  35. S. Dlamini, S. Nkosi, T. Moyo, A. Nhlapo. Mater. Sci. Eng. B 294, 116554 (2023)
  36. Applications of Mossbauer Spectroscopy. 1st ed. / Ed. R.L. Cohen. Elsevier (1980)
  37. V. Kuncser, O. Crisan, G. Schinteie, F. Tolea, P. Palade, M. Valeanu, G. Filoti. Modern Trends in Nanoscience. Editura Academiei Romane, Bucharest (2013). V. 197
  38. A.S. Kamzin, I.M. Obaidat, V.G. Semenov, V. Narayanaswamy, I.A. Al-Omari, B. Issa, I.V. Buryanenko. Phys. Solid State 65, 3, 470 (2023). https://journals.ioffe.ru/articles/55591
  39. V.G. Semenov, V.V. Panchuk. MOssbauer Spectra Processing Software MossFit. Private message
  40. H.L. Andersen, C. Granados-Miralles, M. Saura-Muzquiz, M. Stingaciu, J. Larsen, F. S ndergaard-Pedersen, J.V. Ahlburg, L. Keller, C. Frandsen, M. Christensen. Mater. Chem. Front. 3, 4, 668 (2019)
  41. A.P. Kazin, M.N. Rumyantseva, V.E. Prusakov, I.P. Suzdalev, A.M. Gaskov. Inorg. Mater. 48, 5, 525 (2012). https://link.springer.com/article/10.1134/S002016851205007X.
  42. M.A.A. Kerroum, A. Essyed, C. Iacovita, W. Baaziz, D. Ihiawakrim, O. Mounkachi, M. Hamedoun, A. Benyoussef, M. Benaissa, O. Ersen. J. Magn. Magn. Mater. 478, 239 (2019). https://doi.org/10.1016/j.jmmm.2019.01.081
  43. Q. Lin, J. Xu, F. Yang, J. Lin, H. Yang, Y. He. Materials 11, 10, 1799 (2018). https://www.mdpi.com/1996-1944/11/10/1799
  44. U.B. Gawas, V.M.S. Verenkar, S.S. Meena, P. Bhatt. J. Supercond. Nov. Magn. 30, 11, 3241 (2017). https://link.springer.com/article/10.1007/s10948-017-4149-7
  45. R.V. Upadhyay, R.B. Jotania, R.G. Kulkarni. Physica B I90, 2-3, 183 (1993)
  46. H.M.I. Abdallah, T. Moyo, J.Z. Msomi. J. Phys.: Conf. Ser. 217, 012141 (2010). https://iopscience.iop.org/article/10.1088/ 1742-6596/217/1/012141
  47. T.A. Anh j, B. Bilenberg, B. Thomsen, C.D. Damsgaard, H.K. Rasmussen, C.S. Jacobsen, J. Mygind, S. M rup. J. Magn. Magn. Mater. 260, 1-2, 115 (2003)
  48. M. Patange, S.S. Desai, S.S. Meena, S.M. Yusuf, S.E. Shirsath. RSC Adv. 5, 111, 91482 (2015). https://pubs.rsc.org/en/ content/articlelanding/2015/ra/c5ra21522f/unauth
  49. M.I.A. Abdel Maksoud, A. El-Ghandour, G.S. El-Sayyad, R.A. Fahim, A.H. El-Hanbaly, M. Bekhit, E.K. Abdel-Khalek, H.H. El-Bahnasawy, M.A. Elkodous, A.H. Ashour, A.S. Awed. J. Inorg. Organometall. Polym. Mater. 30, 9, 3709 (2020). https://link.springer.com/article/10.1007/s10904-020-01523-8
  50. S.C. Bhargava, P.K. Iyengar. Physica Status Solidi (b) 53, 1, 359 (1972). https://doi.org/10.1002/pssb.2220530138
  51. R.S. de Biasi, L.H.G. Cardoso. Physica B 407, 18, 3893 (2012). http://dx.doi.org/10.1016/j.physb.2012.06.017
  52. J.Z. Msomi, W.B. Dlamini, T. Moyo, P. Ezekiel. J. Magn. Magn. Mater. 373, 68 (2015). https://www.sciencedirect.com/ science/article/abs/pii/S0304885314000559
  53. S.B. Singh, C. Srinivas, B.V. Tirupanyam, C.L. Prajapat, M.R. Singh, S.S. Meena, P. Bhatt, S.M. Yusuf, D.L. Sastry. Ceram. Int. 42, 16, 19179 (2016). http://dx.doi.org/10.1016/j.ceramint.2016.09.081
  54. G.A. Sawatzky, F. Van Der Woude, A.H. Morrish. Phys. Rev. 187, 2, 747 (1969)
  55. B.F. Bogacz, R. Gargula, P. Kurzyd o, A.T. Pedziwiatr, T. Tatarchuk, N. Paliychuk. Acta Phys. Polonica. A 134, 5, 993 (2018)
  56. C.N. Chinnasamy, A. Narayanasamy, N. Ponpandian, K. Chattopadhyay, K. Shinoda, B. Jeyadevan, K. Tohji, K. Nakatsuka, T. Furubayashi, I. Nakatani. Phys. Rev. B 63, 18, 184108 (2001)
  57. G. Datt, C. Kotabage, S. Datar, A.C. Abhyankar. Phys. Chem. Chem. Phys. 20, 41, 26431 (2018)
  58. G.R. Patta, V. Citti Babu, V. Ravi Kumar, N. Veeraiah. J. Sol-Gel Sci. Technol. 100, 2, 310 (2021)
  59. T. Tatarchuk, N. Paliychuk, M. Pacia, W. Kaspera, W. Macyk, A. Kotarba, B.F. Bogacz, A.T. Pedziwiatr, I. Mironyuk, R. Gargula, P. Kurzyd o, A. Shyichuk. New J. Chem. 43, 7, 3038 (2019)
  60. S. Morup, J.A. Dumesic, H. Topsoe. In: Applications of Mossbauer Spectroscopy / Ed. R.L. Cohen. Academic Press, N. Y. (1980). V. 2. P. 1
  61. R.E. Vandenberghe, E. De Grave. In: Mossbauer Spectroscopy Applied to Inorganic Chemistry. Modern Inorganic Chemistry / Eds G.J. Long, F. Grandjean. Springer, Boston, MA (1989).V. 3. P. 59-182. https://doi.org/10.1007/978-1-4899-2289-2_3
  62. S. M rup, D.E. Madsen, C. Frandsen, C.R.H. Bahl, M.F. Hansen. J. Phys.: Condens. Matter 19, 21, 213202 (2007)
  63. R.H. Kodama, A.E. Berkowitz, E.J. McNiff Jr, S. Foner. J. Appl. Phys. 81, 8, 5552 (1997). https://pubs.aip.org/ aip/jap/article-abstract/81/8/5552/488705/Surface-spin-disorder-in-ferrite-nanoparticles?redirectedFrom=fulltext
  64. E. Umut, M. Co skun, H. Gungune s, V. Dupuis, A.S. Kamzin. J. Supercon. Nov. Magn. 34, 3, 913 (2021). https://doi.org/10.1007/s10948-020-05800-y
  65. Y. Yafet, C. Kittel. Phys. Rev. 87, 2, 290 (1952)
  66. L. Neel. J. Physique 15, 4, 225 (1954)
  67. A.S. Kamzin, L.A. Grigor'ev. JETP Lett. 57, 9, 557 (1993)
  68. A.S. Kamzin, L.A. Grigor'ev. ZETP 77, 4, 658 (1993)
  69. J.M.D. Coey. Phys. Rev. Lett. 27, 17, 1140 (1971)
  70. Mossbauer Spectroscopy Applied to Magnetism and Material Science / Eds G.J. Long, F. Grandjean. Plenum Press, N. Y. (1993). 479 p
  71. A.S. Kamzin, V.P. Rusakov, L.A. Grigoriev. Int. Conf. USSR. Proc. Part II, 271 (1988)
  72. A.S. Kamzin, L.A. Grigor'ev. Sov. Tech. Phys. Lett. 6, 6, 417 (1990)
  73. A.S. Kamzin, L.A. Grigor'ev. Sov. Tech. Phys. 35, 7, 840 (1990)
  74. F. Schaaf, U. Gonser. Hyperfine Interact. 57, 1-4, 2101 (1990)
  75. U. Gonzer, P. Schaaf, F. Aubertin. Hyperfine Interact. 66, 1-4, 95 (1991)
  76. A.S. Kamzin, L.P. Ol'khovik, V.L. Rozenbaum. JETP 84, 4, 788 (1997)
  77. A.S. Kamzin. JETP 89, 5, 891 (1999)
  78. A.S. Kamzin, L.P. Ol'khovik, V.L. Rozenbaum. Phys. Solid State 41, 3, 433 (1999)
  79. A.S. Kamzin, V.L. Rozenbaum, L.P. Ol'khovik. JETP Lett. 67, 10, 843 (1998)
  80. A.S. Kamzin, L.P. Ol'khovik. Phys. Solid State 41, 10, 1658 (1999)
  81. A.S. Kamzin, I.M. Obaidat, A.A. Valiullin, V.G. Semenov, I.A. Al-Omari. Phys. Solid State 62, 10, 1933 (2020). DOI: https://link. springer.com/article/10.1134/S1063783420100157
  82. M.E. Matsnev, V.S. Rusakov. AIP Conf. Proc. 1489, 1, 178 (2012)
  83. G.N. Konygin, O.M. Nemtsova, V.E. Porsev. Zhurn. priklad. spektroskopii 86, 3, 374 (2019). (in Russian).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru