Physics of the Solid State
Volumes and Issues
Studies of magnetic nanoparticles MnxFe3-xO4@OA (0≤ x≤ 1.0) functionalized with oleic acid (OA) for biomedical applications
Kamzin A. S.1, Dogan N.2,3, Dogan O. M.2, Semenov V. G.4
1Ioffe Institute, St. Petersburg, Russia
2Department of Physics, Gebze Technical University, Kocaeli, Turkey
3Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey
4St. Petersburg State University, St. Petersburg, Russia
Email: ASKam@mail.ioffe.ru

PDF
Functionalization of magnetic nanoparticles (MNP) is a unique of magnetic nanoparticles (MNP) is a unique tool for creating particles with the properties required for biomedical applications. Therefore, the study of the magnetic properties of coated MNPs is the most important task of our time. The effect of changes in the concentration of Mn ions on the properties of MnxFe3-xO4 nanoparticles coated with oleic acid (OA) MnxFe3-xO4@OA (where x=0, 0.25, 0.5, 0.75 and 1.0) to create stabilized magnetic fluids for various applications is investigated. The synthesis of MnxFe3-xO4@OA MNPs was carried out by thermal decomposition using manganese-oleate and iron oleate. The properties and phase states of the obtained MNPs were studied by X-ray diffraction (XRD) and Mossbauer spectroscopy. To understand the behavior of MNPs in small magnetic fields during hyperthermic treatment, Mossbauer studies of MnxFe3-xO4@OA particles were carried out when a magnetic field with a strength of 1.7 kOe was applied. It is established that the thermal decomposition method makes it possible to obtain single-phase superparamagnetic particles promising for biomedical applications Keywords: magnetic nanoparticles (MNP) MnxFe3-xO4, MNP fuctionalised by oleic acid MnxFe3-xO4@OA, magnetic properties, structure, Mossbauer spectroscopy. DOI: 10.61011/PSS.2023.08.56587.127
  1. O. Kalogirou. Modern Ferrites: Emerging. Technologies and Applications. Biomedical Applications of Nanoparticle Ferrites / Ed. V.G. Harris. John Wiley \& Sons Ltd. (2023). V. 2. Ch. 10. P. 347
  2. L.S. Arias, J.P. Pessan, A.P.M. Vieira, T.M.T. de Lima, A.C.B. Delbem, D.R. Monteiro. Antibiotics 7, 46 (2018). DOI: 10.3390/antibiotics7020046
  3. V. Socoliuc, D. Peddis, V.I. Petrenko, M.V. Avdeev, D. Susan-Resiga, T. Szabo, R. Turcu, E. Tombacz, L. Vekas. Magnetochem. 6, 2 (2020)
  4. N.V. Tkachenko, L.P. Olkhovik, A.S. Kamzin. FTT 53, 1512 (2011). (in Russian)
  5. A.M. Granov, S.F. Vershinina, R.B. Samsonov, A.B. Markochev, V.I. Yevtushenko. Med. akad. zhurn., 17 (1), 82 (2017). (in Russian)
  6. L. Vekas. Adv. Sci. Technology 54, 127 (2008). DOI: 10.4028/www.scientific.net/AST.54.127
  7. S.A. Novopashin, M.A. Serebryakova, S.Ya. Khmel. Teplofizika i aeromekhanika 22, 4, 411, (2015). (in Russian)
  8. O. Oehlsen, S.I. Cervantes-Rami rez, P. Cervantes-Aviles, I.A. Medina-Velo. ACS Omega 7, 3134 (2022)
  9. S. Vinod, J. Philip. Adv. Colloid Interface Sci. 307, 102729 (2022). https://doi.org/10.1016/j.cis.2022.102729
  10. XVIII Mezhdunar. Plesskaya nauch. konf. po nanodispersnym magnitnym zhidkostyam. Tr. / Edited by Yu.B. Kazakov. Izd-vo Ivanovskogo gos. energeticheskogo un-ta im. V.I. Lenina. ISBN 978-5-00062-343-5. 2018. 260 p. (in Russian)
  11. V.R. Khabibullin, G.V. Stepanov. Zhurn. fiz. khimii 93, 7, 1048 (2019). (in Russian)
  12. N. Dogan, O.M. Dogan, M. Irfan, F. Ozel, A.S. Kamzin, V.G. Semenov, I.V. Buryanenko. J. Magn. Magn. Mater. 561, 169654 (2022). https://doi.org/10.1016/j.jmmm.2022.169654
  13. A.S. Kamzin, G. Caliskan, N. Dogan, A. Bingolbali, V.G. Semenov, I.V. Buryanenko. FTT, 64, 1570 (2022). (in Russian). DOI: 10.21883/FTT.2022.10.53107.391
  14. A.S. Kamzin, G. Caliskan, N. Dogan, A. Bingolbali, V.G. Semenov, I.V. Buryanenko. ZhTF 92, 1884 (2022). (in Russian)
  15. L.S. Ganapathe, M.A. Mohamed, R.M. Yunus, D.D. Berhanuddin. Magnetochem. 6, 68 (2020). DOI: 10.3390/magnetochemistry6040068
  16. S. Gul, S.B. Khan, I.U. Rehman, M.A. Khan, M.I. Khan. Front. Mater. 6, 179 (2019)
  17. K.K. Kefeni, T.A.M. Msagati, T.T.I. Nkambule, B.B. Mamba. Mater. Sci. Eng. C 107, 110314 (2020). https://doi.org/10.1016/j.msec.2019.110314
  18. V. Narayanaswamy, S. Sambasivam, A. Saj, S. Alaabed, B. Issa, I.A. Al-Omari, M. Obaidat. Molecules 26, 796 (2021). https://doi.org/10.3390/molecules26040796
  19. T. Muthukumaran, S.S. Pati, L.H. Singh, A.C. de Oliveira, V.K. Garg, J. Philip. App. Nanosci. 8, 593 (2018). https://doi.org/10.1007/s13204-018-0715-y
  20. M. Abdolrahimi, M. Vasilakaki, S. Slimani, N. Ntallis, G. Varvaro, S. Laureti, C. Meneghini, K.N. Trohidou, D. Fiorani, D. Peddis. Nanomaterials 11, 1787 (2021). https://doi.org/10.3390/nano11071787
  21. R. Ghosh, L. Pradhan, Y.P. Devi, S.S. Meena, R. Tewari, A. Kumar, S. Sharma, N.S. Gajbhiye, R. K. Vatsa, B.N. Pandey, R.S. Ningthoujam. J. Mater. Chem., 21, 13388 (2011)
  22. Z. Karimi, S. Abbasi, H. Shokrollahi, Gh. Yousefi, M. Fahham, L. Karimi, O. Firuzi. Mater. Sci. Eng. C 71 (2017) 504 p. http://dx.doi.org/10.1016/j.msec.2016.10.008
  23. S.R. Mokhosi, W. Mdlalose, A. Nhlapo, M.I. Singh. Pharmaceutics 14, 937 (2022). https://doi.org/10.3390/pharmaceutics14050937
  24. U. Klekotka, D. Satu a, Simo Spassov, Beata Kalska-Szostko. Mater. 14, 100 (2021). https://doi.org/10.3390/ma14010100
  25. R.G.D. Andrade, S.R.S. Veloso, E.M.S. Castanheira. Int. J. Mol. Sci. 21, 2455 (2020). DOI: 10.3390/ijms21072455
  26. X. Liang, Y. Zhong, S. Zhu, H. He, P. Yuan, J. Zhu, Z. Jiang. Solid State Sci. 15, 115 (2013). http://dx.doi.org/10.1016/j.solidstatesciences.2012.10.005. l
  27. P. Saha, R. Rakshit, K. Mandal. J. Magn. Magn. Mater. 475, 130 (2019). https://doi.org/10.1016/j.jmmm.2018.11.061
  28. A.S. Korsakova, D.A. Kotsikau, Yu.S. Haiduk, V.V. Pankov. Condens. Matter Interphas. 22, 466 (2020). DOI: https://doi.org/10.17308/kcmf.2020.22/3076
  29. K. Rotjanasuworapong, W. Lerdwijitjarud, A. Sirivat. Nanomaterials 11, 876 (2021). https://doi.org/10.3390/nano11040876
  30. Y.H. Li, T. Kouh, In-Bo Shim, Ch.S. Kim. J. App. Phys. 111, 07B544 (2012). DOI: 10.1063/1.3687007
  31. J. Lee, S. Zhang, S.H. Sun. Chem. Mater. 25, 1293 (2013)
  32. M. Aghazadeh, I. Karimzadeh, M.R. Ganjali. Mater. Lett. 228, 137 (2018). https://doi.org/10.1016/j.matlet.2018.05.087
  33. V.G. Semenov, V.V. Panchuk. Mossbauer Spectra Processing Software MOSWIN. Chast. soobschenie
  34. N.C.C. Lobato, M.B. Mansur, A. de M. Ferreira. Mater. Res. 20, 736 (2017). https://doi.org/10.1590/1980-5373-mr-2016-0707
  35. J. Dhumal, S.S. Bandgar, M. Phadatare, G.S. Shahane. Internat. J. Res. Anal. Rev. 6, 1058 (2019)
  36. S. Sunaryono, M.F. Hidaya, N. Mufti, S. Soontaranon, A. Taufiq. J. Polymer Res. 27, 284 (2020). https://doi.org/10.1007/s10965-020-02065-w
  37. G. Antarnusa. Mater. Res. Express 7, 056103 (2020). https://doi.org/10.1088/2053-1591/ab8bef
  38. Mossbauer Spectroscopy Applied to Magnetism and Material Science / Eds G.J. Long, F. Grandjean. Plenum Press, N.Y. (1993). 479 p
  39. S. Morup, H. Topsoe. App. Phys. 11, 63 (1976)
  40. M.A. Chuev. ZhETF 141, 698 (2012). (in Russian).
  41. K.S. Al-Rashdi, H.M. Widatallah, F. Al Ma'Mari, O. Cespedes, M. Elzain, A. Al-Rawas, A. Gismelseed, A. Yousif. Hyperfine Interact. 239, 3 (2018). https://doi.org/10.1007/s10751-017-1476-9
  42. A. Alomari, H.M. El Ghanem, A.-F. Lehlooh, I.M. Arafa, I. Bsoul, Sensors Transducers 192, 53 (2015)
  43. G.F. Goya, T.S. Berquo, F.C. Fonseca, M.P. Morales. J. Appl. Phys., 94, 3520 (2003)
  44. V. Sepelak, A. Feldhoff, P. Heitjans, F. Krumeich, D. Menzel, F.J. Litterst, I. Bergmann, K.D. Becker, Chem. Mater. 18, 3057 (2006)
  45. B. Kalska, J.J. Paggel, P. Fumagalli, J. Rybczynski, D. Satula, M. Hilgendorff, M. Giersig. J. App. Phys. 95, 1343 (2004). DOI: 10.1063/1.1637134
  46. S.H. Gee, Y.K. Hong, D.W. Erickson, M.H. Park. J. Appl. Phys. 93, 7560 (2003)
  47. S.B. Singh, Ch. Srinivas, B.V. Tirupanyam, C.L. Prajapat, M.R. Singh, S.S. Meena, Pramod Bhatte, S.M. Yusuf, D.L. Sastry. Ceram. Int. 42, 19188 (2016). http://dx.doi.org/10.1016/j.ceramint.2016.09
  48. W.B. Dlamini, J.Z. Msomi, T. Moyo. J. Magn. Magn. Mater. 373, 78 (2015). http://dx.doi.org/10.1016/j.jmmm.2014.01.066
  49. M.I.A.A. Maksoud, A. El-Ghandour, G.S. El-Sayyad, R.A. Fahim, A.H. El-Hanbal, M. Bekhit, E.K. Abdel-Khale, H.H. El-Bahnasawy, M.A. El-Kodous, H. Ashour, A.S. Awed. J. Inorg. Organomet. Polym. Mater. 30, 3709 (2020). doi.org/10.1007/s1090 4-020-01523-8
  50. K.L. Zaharieva, Z.P. Cherkezova-Zheleva, B.N. Kunev, I.G. Mitov, S.S. Dimova. Bulgar. Chem. Commun. 47, 261 (2015)
  51. E. Umut, M. Coskun, H. Gungunes, V. Dupuis, A.S. Kamzin. J Supercond. Nov. Magn. 34, 913 (2021)
  52. S. M rup, F. B dker, P.V. Hendriksen, S. Linderoth. Phys. Rev. B 52, 287 (1995)
  53. G.A. Sawatzky, F. Van Der Woude, A.H. Morrish. Phys. Rev. 187, 747 (1969)
  54. L. Haggstrom, H. Annersten, T. Ericsson, R. Wappling, W. Karner, S. Bjarman, Hyperfine Interact. 5, 201 (1978)
  55. E.J.W. Verwey. Nature 144, 327 (1939)
  56. T. Merceron, C. Djega-Mariadassou, J.L. Dormann, J. Magn. Magn. Mater. 31-34, 781 (1983)
  57. B. Issa, I. Obaidat, B. Albiss, Y. Haik. Int. J. Mol. Sci. 14, 21266 (2013) http://www.mdpi.com/1422-0067/14/11/21266
  58. A.E. Berkowitz, W.J. Schuele, P.J. Flanders, J. Appl. Phys. 39, 1261 (1968). DOI: 10.1103/physrevlett.27.1140
  59. J.M.D. Coey. Phys. Rev. Lett 27, 17, 1140 (1971)
  60. S. M rup, M.F. Hansen, C. Frandsen. Materials Science and Materials Engineering. Comprehensive Nanoscience and Nanotechnology. 2-d ed. Magn. Nanopart. 1, 89 (2019). https://doi.org/10.1016/B978-0-12-803581-8.11338-4
  61. A.S. Kamzin, L.A. Grigoriev. Pis'ma v ZhETF 57, 543 (1993). (in Russian). A.S. Kamzin, L.A. Grigoriev. ZhETF 104, 3489 (1993). (in Russian)
  62. A.S. Kamzin, V.P. Rusakov, L.A. Grigoriev. Physics of Transition Metals. Int. Conf. USSR(1988). Proc. Pt. II. P. 271
  63. A.S. Kamzin, L.A. Grigoriev, Pis'ma v ZhETF, 16, 16, 38 (1990), A.S. Kamzin, L.A. Grigoriev. ZhTF 60, 7, 151 (1990). (in Russian)
  64. F. Schaaf, U. Gonser. Hyperfine Interact. 57, 2101 (1990). U. Gonzer, P. Schaaf, F. Aubertin. Hyperfine Interact. 66, 95 (1991)
  65. A.S. Kamzin, L.P. Olkhovik, V.L. Rosenbaum. Pis'ma v ZhETF 61, 916, (1995). (in Russian)
  66. L. Neel. J. Phys. Rad. 15, 4, 225 (1954)
  67. A.S. Kamzin, L.A. Grigor'ev. JETP Lett. 57, 9, 557 (1993)
  68. A.S. Kamzin. JETP 89, 5, 891 (1999)
  69. A.S. Kamzin, L.P. Ol'khovik, V.L. Rozenbaum. Phys. Solid State 41, 3, 433 (1999)
  70. A.S. Kamzin, V.L. Rozenbaum, L.P. Ol'khovik. JETP Lett. 67, 10, 843 (1998)
  71. A.S. Kamzin, L.P. Ol'khovik. Phys. Solid State 41, 10, 1658 (1999)
  72. A.S. Kamzin, I.M. Obaidat, A.A. Valiullin, V.G. Semenov, I.A. Al-Omari. Phys. Solid State 62, 10, 1933 (2020). DOI: https://link.springer.com/article/10.1134/ S1063783420100157
  73. M.E. Matsnev, V.S. Rusakov. AIP Conf. Proc. 1489, 178 (2012)
  74. G.N. Konygin, O.M. Nemtsova, V.E. Porsev. Zhurn. prikl. spektroskopii 86, 374 (2019). (in Russian)
  75. M. Eibschuts, S. Shtrikman. J. Appl. Phys. 39, 997 (1968)
  76. M.A. Chuev. J. Exp. Theor. Phys. 114, 609 (2012). DOI: 10.1134/S1063776112020185
  77. Dezsi, Cs. Fetzer, A. Gombkoto, I. Szucs, J. Gubicza, T. Ungar. J. App. Phys. 103, 104312 (2008). DOI: 10.1063/1.2937252
  78. M.A. Shipilin, I.N. Zakharova, A.M. Shipilin, V.I. Bachurin. Poverkhnost'. Rentgenovskie, sinkhrotronnye i neytronnye issledovaniya 6, 45 (2014). (in Russian). DOI: 10.7868/S0207352814060171
  79. A.-F. Lehlooh, S.H. Mahmood. J. Magn. Magn. Mater. 151, 163 (1995)
  80. H.Y. Hah, S. Gray, C.E. Johnson, J.A. Johnson, V. Kolesnichenko, P. Kucheryavy, G. Goloverda. J. Magn. Magn. Mater. 539, 168382 (2021)
  81. V.V. Grecu, S. Constantinescu, M.N. Grecu, R. Olar, M. Badea, R. Turcu, Hyperfine Interact. 183, 205 (2008)
  82. E. Umut. Hittite J. Sci. Eng. 6, 243 (2019). DOI: 10.17350/HJSE19030000154
  83. S.V. Bhandare, R. Kumar, A.V. Anupama, H.K. Choudhary, V.M. Jali, B. Sahoo. J. Magn. Magn. Mater. 433, 29 (2017). http://dx.doi.org/10.1016/j.jmmm.2017.02.040
  84. S.K. Shaw, J. Kailashiya, Santosh K. Gupta, C.L. Prajapat, Sher Singh Meena, D. Dash, P. Maiti, N.K. Prasad. J. Alloys Comp. 899, 163192 (2022). https://doi.org/10.1016/j.jallcom.2021.163192
  85. M. Popa, P. Bruna, D. Crespo, J.M.C. Moreno. J. Am. Ceram. Soc. 91, 2488 (2008). DOI: 10.1111/j.1551-2916.2008.02501.x
  86. W.H. Kwon, Jae-Gwang Lee, W.O. Choi, K.P. Chae. J. Magnet. 18, 26 (2013). http://dx.doi.org/10.4283/JMAG.2013.18.1.026
  87. M. Sorescu, D. Mihaila-Tarabasanu, L. Diamandescu. App. Phys. Let. 72, 2047 (1998); DOI: 10.1063/1.121260.

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru