Kamzin A. S.1, Dogan N.2,3, Dogan O. M.2, Semenov V. G.4
1Ioffe Institute, St. Petersburg, Russia
2Department of Physics, Gebze Technical University, Kocaeli, Turkey
3Department of Bioengineering, Faculty of Chemical and Metallurgical Engineering, Yildiz Technical University, Istanbul, Turkey
4St. Petersburg State University, St. Petersburg, Russia
Email: ASKam@mail.ioffe.ru
Functionalization of magnetic nanoparticles (MNP) is a unique of magnetic nanoparticles (MNP) is a unique tool for creating particles with the properties required for biomedical applications. Therefore, the study of the magnetic properties of coated MNPs is the most important task of our time. The effect of changes in the concentration of Mn ions on the properties of MnxFe3-xO4 nanoparticles coated with oleic acid (OA) MnxFe3-xO4@OA (where x=0, 0.25, 0.5, 0.75 and 1.0) to create stabilized magnetic fluids for various applications is investigated. The synthesis of MnxFe3-xO4@OA MNPs was carried out by thermal decomposition using manganese-oleate and iron oleate. The properties and phase states of the obtained MNPs were studied by X-ray diffraction (XRD) and Mossbauer spectroscopy. To understand the behavior of MNPs in small magnetic fields during hyperthermic treatment, Mossbauer studies of MnxFe3-xO4@OA particles were carried out when a magnetic field with a strength of 1.7 kOe was applied. It is established that the thermal decomposition method makes it possible to obtain single-phase superparamagnetic particles promising for biomedical applications Keywords: magnetic nanoparticles (MNP) MnxFe3-xO4, MNP fuctionalised by oleic acid MnxFe3-xO4@OA, magnetic properties, structure, Mossbauer spectroscopy. DOI: 10.61011/PSS.2023.08.56587.127
- O. Kalogirou. Modern Ferrites: Emerging. Technologies and Applications. Biomedical Applications of Nanoparticle Ferrites / Ed. V.G. Harris. John Wiley \& Sons Ltd. (2023). V. 2. Ch. 10. P. 347
- L.S. Arias, J.P. Pessan, A.P.M. Vieira, T.M.T. de Lima, A.C.B. Delbem, D.R. Monteiro. Antibiotics 7, 46 (2018). DOI: 10.3390/antibiotics7020046
- V. Socoliuc, D. Peddis, V.I. Petrenko, M.V. Avdeev, D. Susan-Resiga, T. Szabo, R. Turcu, E. Tombacz, L. Vekas. Magnetochem. 6, 2 (2020)
- N.V. Tkachenko, L.P. Olkhovik, A.S. Kamzin. FTT 53, 1512 (2011). (in Russian)
- A.M. Granov, S.F. Vershinina, R.B. Samsonov, A.B. Markochev, V.I. Yevtushenko. Med. akad. zhurn., 17 (1), 82 (2017). (in Russian)
- L. Vekas. Adv. Sci. Technology 54, 127 (2008). DOI: 10.4028/www.scientific.net/AST.54.127
- S.A. Novopashin, M.A. Serebryakova, S.Ya. Khmel. Teplofizika i aeromekhanika 22, 4, 411, (2015). (in Russian)
- O. Oehlsen, S.I. Cervantes-Rami rez, P. Cervantes-Aviles, I.A. Medina-Velo. ACS Omega 7, 3134 (2022)
- S. Vinod, J. Philip. Adv. Colloid Interface Sci. 307, 102729 (2022). https://doi.org/10.1016/j.cis.2022.102729
- XVIII Mezhdunar. Plesskaya nauch. konf. po nanodispersnym magnitnym zhidkostyam. Tr. / Edited by Yu.B. Kazakov. Izd-vo Ivanovskogo gos. energeticheskogo un-ta im. V.I. Lenina. ISBN 978-5-00062-343-5. 2018. 260 p. (in Russian)
- V.R. Khabibullin, G.V. Stepanov. Zhurn. fiz. khimii 93, 7, 1048 (2019). (in Russian)
- N. Dogan, O.M. Dogan, M. Irfan, F. Ozel, A.S. Kamzin, V.G. Semenov, I.V. Buryanenko. J. Magn. Magn. Mater. 561, 169654 (2022). https://doi.org/10.1016/j.jmmm.2022.169654
- A.S. Kamzin, G. Caliskan, N. Dogan, A. Bingolbali, V.G. Semenov, I.V. Buryanenko. FTT, 64, 1570 (2022). (in Russian). DOI: 10.21883/FTT.2022.10.53107.391
- A.S. Kamzin, G. Caliskan, N. Dogan, A. Bingolbali, V.G. Semenov, I.V. Buryanenko. ZhTF 92, 1884 (2022). (in Russian)
- L.S. Ganapathe, M.A. Mohamed, R.M. Yunus, D.D. Berhanuddin. Magnetochem. 6, 68 (2020). DOI: 10.3390/magnetochemistry6040068
- S. Gul, S.B. Khan, I.U. Rehman, M.A. Khan, M.I. Khan. Front. Mater. 6, 179 (2019)
- K.K. Kefeni, T.A.M. Msagati, T.T.I. Nkambule, B.B. Mamba. Mater. Sci. Eng. C 107, 110314 (2020). https://doi.org/10.1016/j.msec.2019.110314
- V. Narayanaswamy, S. Sambasivam, A. Saj, S. Alaabed, B. Issa, I.A. Al-Omari, M. Obaidat. Molecules 26, 796 (2021). https://doi.org/10.3390/molecules26040796
- T. Muthukumaran, S.S. Pati, L.H. Singh, A.C. de Oliveira, V.K. Garg, J. Philip. App. Nanosci. 8, 593 (2018). https://doi.org/10.1007/s13204-018-0715-y
- M. Abdolrahimi, M. Vasilakaki, S. Slimani, N. Ntallis, G. Varvaro, S. Laureti, C. Meneghini, K.N. Trohidou, D. Fiorani, D. Peddis. Nanomaterials 11, 1787 (2021). https://doi.org/10.3390/nano11071787
- R. Ghosh, L. Pradhan, Y.P. Devi, S.S. Meena, R. Tewari, A. Kumar, S. Sharma, N.S. Gajbhiye, R. K. Vatsa, B.N. Pandey, R.S. Ningthoujam. J. Mater. Chem., 21, 13388 (2011)
- Z. Karimi, S. Abbasi, H. Shokrollahi, Gh. Yousefi, M. Fahham, L. Karimi, O. Firuzi. Mater. Sci. Eng. C 71 (2017) 504 p. http://dx.doi.org/10.1016/j.msec.2016.10.008
- S.R. Mokhosi, W. Mdlalose, A. Nhlapo, M.I. Singh. Pharmaceutics 14, 937 (2022). https://doi.org/10.3390/pharmaceutics14050937
- U. Klekotka, D. Satu a, Simo Spassov, Beata Kalska-Szostko. Mater. 14, 100 (2021). https://doi.org/10.3390/ma14010100
- R.G.D. Andrade, S.R.S. Veloso, E.M.S. Castanheira. Int. J. Mol. Sci. 21, 2455 (2020). DOI: 10.3390/ijms21072455
- X. Liang, Y. Zhong, S. Zhu, H. He, P. Yuan, J. Zhu, Z. Jiang. Solid State Sci. 15, 115 (2013). http://dx.doi.org/10.1016/j.solidstatesciences.2012.10.005. l
- P. Saha, R. Rakshit, K. Mandal. J. Magn. Magn. Mater. 475, 130 (2019). https://doi.org/10.1016/j.jmmm.2018.11.061
- A.S. Korsakova, D.A. Kotsikau, Yu.S. Haiduk, V.V. Pankov. Condens. Matter Interphas. 22, 466 (2020). DOI: https://doi.org/10.17308/kcmf.2020.22/3076
- K. Rotjanasuworapong, W. Lerdwijitjarud, A. Sirivat. Nanomaterials 11, 876 (2021). https://doi.org/10.3390/nano11040876
- Y.H. Li, T. Kouh, In-Bo Shim, Ch.S. Kim. J. App. Phys. 111, 07B544 (2012). DOI: 10.1063/1.3687007
- J. Lee, S. Zhang, S.H. Sun. Chem. Mater. 25, 1293 (2013)
- M. Aghazadeh, I. Karimzadeh, M.R. Ganjali. Mater. Lett. 228, 137 (2018). https://doi.org/10.1016/j.matlet.2018.05.087
- V.G. Semenov, V.V. Panchuk. Mossbauer Spectra Processing Software MOSWIN. Chast. soobschenie
- N.C.C. Lobato, M.B. Mansur, A. de M. Ferreira. Mater. Res. 20, 736 (2017). https://doi.org/10.1590/1980-5373-mr-2016-0707
- J. Dhumal, S.S. Bandgar, M. Phadatare, G.S. Shahane. Internat. J. Res. Anal. Rev. 6, 1058 (2019)
- S. Sunaryono, M.F. Hidaya, N. Mufti, S. Soontaranon, A. Taufiq. J. Polymer Res. 27, 284 (2020). https://doi.org/10.1007/s10965-020-02065-w
- G. Antarnusa. Mater. Res. Express 7, 056103 (2020). https://doi.org/10.1088/2053-1591/ab8bef
- Mossbauer Spectroscopy Applied to Magnetism and Material Science / Eds G.J. Long, F. Grandjean. Plenum Press, N.Y. (1993). 479 p
- S. Morup, H. Topsoe. App. Phys. 11, 63 (1976)
- M.A. Chuev. ZhETF 141, 698 (2012). (in Russian).
- K.S. Al-Rashdi, H.M. Widatallah, F. Al Ma'Mari, O. Cespedes, M. Elzain, A. Al-Rawas, A. Gismelseed, A. Yousif. Hyperfine Interact. 239, 3 (2018). https://doi.org/10.1007/s10751-017-1476-9
- A. Alomari, H.M. El Ghanem, A.-F. Lehlooh, I.M. Arafa, I. Bsoul, Sensors Transducers 192, 53 (2015)
- G.F. Goya, T.S. Berquo, F.C. Fonseca, M.P. Morales. J. Appl. Phys., 94, 3520 (2003)
- V. Sepelak, A. Feldhoff, P. Heitjans, F. Krumeich, D. Menzel, F.J. Litterst, I. Bergmann, K.D. Becker, Chem. Mater. 18, 3057 (2006)
- B. Kalska, J.J. Paggel, P. Fumagalli, J. Rybczynski, D. Satula, M. Hilgendorff, M. Giersig. J. App. Phys. 95, 1343 (2004). DOI: 10.1063/1.1637134
- S.H. Gee, Y.K. Hong, D.W. Erickson, M.H. Park. J. Appl. Phys. 93, 7560 (2003)
- S.B. Singh, Ch. Srinivas, B.V. Tirupanyam, C.L. Prajapat, M.R. Singh, S.S. Meena, Pramod Bhatte, S.M. Yusuf, D.L. Sastry. Ceram. Int. 42, 19188 (2016). http://dx.doi.org/10.1016/j.ceramint.2016.09
- W.B. Dlamini, J.Z. Msomi, T. Moyo. J. Magn. Magn. Mater. 373, 78 (2015). http://dx.doi.org/10.1016/j.jmmm.2014.01.066
- M.I.A.A. Maksoud, A. El-Ghandour, G.S. El-Sayyad, R.A. Fahim, A.H. El-Hanbal, M. Bekhit, E.K. Abdel-Khale, H.H. El-Bahnasawy, M.A. El-Kodous, H. Ashour, A.S. Awed. J. Inorg. Organomet. Polym. Mater. 30, 3709 (2020). doi.org/10.1007/s1090 4-020-01523-8
- K.L. Zaharieva, Z.P. Cherkezova-Zheleva, B.N. Kunev, I.G. Mitov, S.S. Dimova. Bulgar. Chem. Commun. 47, 261 (2015)
- E. Umut, M. Coskun, H. Gungunes, V. Dupuis, A.S. Kamzin. J Supercond. Nov. Magn. 34, 913 (2021)
- S. M rup, F. B dker, P.V. Hendriksen, S. Linderoth. Phys. Rev. B 52, 287 (1995)
- G.A. Sawatzky, F. Van Der Woude, A.H. Morrish. Phys. Rev. 187, 747 (1969)
- L. Haggstrom, H. Annersten, T. Ericsson, R. Wappling, W. Karner, S. Bjarman, Hyperfine Interact. 5, 201 (1978)
- E.J.W. Verwey. Nature 144, 327 (1939)
- T. Merceron, C. Djega-Mariadassou, J.L. Dormann, J. Magn. Magn. Mater. 31-34, 781 (1983)
- B. Issa, I. Obaidat, B. Albiss, Y. Haik. Int. J. Mol. Sci. 14, 21266 (2013) http://www.mdpi.com/1422-0067/14/11/21266
- A.E. Berkowitz, W.J. Schuele, P.J. Flanders, J. Appl. Phys. 39, 1261 (1968). DOI: 10.1103/physrevlett.27.1140
- J.M.D. Coey. Phys. Rev. Lett 27, 17, 1140 (1971)
- S. M rup, M.F. Hansen, C. Frandsen. Materials Science and Materials Engineering. Comprehensive Nanoscience and Nanotechnology. 2-d ed. Magn. Nanopart. 1, 89 (2019). https://doi.org/10.1016/B978-0-12-803581-8.11338-4
- A.S. Kamzin, L.A. Grigoriev. Pis'ma v ZhETF 57, 543 (1993). (in Russian). A.S. Kamzin, L.A. Grigoriev. ZhETF 104, 3489 (1993). (in Russian)
- A.S. Kamzin, V.P. Rusakov, L.A. Grigoriev. Physics of Transition Metals. Int. Conf. USSR(1988). Proc. Pt. II. P. 271
- A.S. Kamzin, L.A. Grigoriev, Pis'ma v ZhETF, 16, 16, 38 (1990), A.S. Kamzin, L.A. Grigoriev. ZhTF 60, 7, 151 (1990). (in Russian)
- F. Schaaf, U. Gonser. Hyperfine Interact. 57, 2101 (1990). U. Gonzer, P. Schaaf, F. Aubertin. Hyperfine Interact. 66, 95 (1991)
- A.S. Kamzin, L.P. Olkhovik, V.L. Rosenbaum. Pis'ma v ZhETF 61, 916, (1995). (in Russian)
- L. Neel. J. Phys. Rad. 15, 4, 225 (1954)
- A.S. Kamzin, L.A. Grigor'ev. JETP Lett. 57, 9, 557 (1993)
- A.S. Kamzin. JETP 89, 5, 891 (1999)
- A.S. Kamzin, L.P. Ol'khovik, V.L. Rozenbaum. Phys. Solid State 41, 3, 433 (1999)
- A.S. Kamzin, V.L. Rozenbaum, L.P. Ol'khovik. JETP Lett. 67, 10, 843 (1998)
- A.S. Kamzin, L.P. Ol'khovik. Phys. Solid State 41, 10, 1658 (1999)
- A.S. Kamzin, I.M. Obaidat, A.A. Valiullin, V.G. Semenov, I.A. Al-Omari. Phys. Solid State 62, 10, 1933 (2020). DOI: https://link.springer.com/article/10.1134/ S1063783420100157
- M.E. Matsnev, V.S. Rusakov. AIP Conf. Proc. 1489, 178 (2012)
- G.N. Konygin, O.M. Nemtsova, V.E. Porsev. Zhurn. prikl. spektroskopii 86, 374 (2019). (in Russian)
- M. Eibschuts, S. Shtrikman. J. Appl. Phys. 39, 997 (1968)
- M.A. Chuev. J. Exp. Theor. Phys. 114, 609 (2012). DOI: 10.1134/S1063776112020185
- Dezsi, Cs. Fetzer, A. Gombkoto, I. Szucs, J. Gubicza, T. Ungar. J. App. Phys. 103, 104312 (2008). DOI: 10.1063/1.2937252
- M.A. Shipilin, I.N. Zakharova, A.M. Shipilin, V.I. Bachurin. Poverkhnost'. Rentgenovskie, sinkhrotronnye i neytronnye issledovaniya 6, 45 (2014). (in Russian). DOI: 10.7868/S0207352814060171
- A.-F. Lehlooh, S.H. Mahmood. J. Magn. Magn. Mater. 151, 163 (1995)
- H.Y. Hah, S. Gray, C.E. Johnson, J.A. Johnson, V. Kolesnichenko, P. Kucheryavy, G. Goloverda. J. Magn. Magn. Mater. 539, 168382 (2021)
- V.V. Grecu, S. Constantinescu, M.N. Grecu, R. Olar, M. Badea, R. Turcu, Hyperfine Interact. 183, 205 (2008)
- E. Umut. Hittite J. Sci. Eng. 6, 243 (2019). DOI: 10.17350/HJSE19030000154
- S.V. Bhandare, R. Kumar, A.V. Anupama, H.K. Choudhary, V.M. Jali, B. Sahoo. J. Magn. Magn. Mater. 433, 29 (2017). http://dx.doi.org/10.1016/j.jmmm.2017.02.040
- S.K. Shaw, J. Kailashiya, Santosh K. Gupta, C.L. Prajapat, Sher Singh Meena, D. Dash, P. Maiti, N.K. Prasad. J. Alloys Comp. 899, 163192 (2022). https://doi.org/10.1016/j.jallcom.2021.163192
- M. Popa, P. Bruna, D. Crespo, J.M.C. Moreno. J. Am. Ceram. Soc. 91, 2488 (2008). DOI: 10.1111/j.1551-2916.2008.02501.x
- W.H. Kwon, Jae-Gwang Lee, W.O. Choi, K.P. Chae. J. Magnet. 18, 26 (2013). http://dx.doi.org/10.4283/JMAG.2013.18.1.026
- M. Sorescu, D. Mihaila-Tarabasanu, L. Diamandescu. App. Phys. Let. 72, 2047 (1998); DOI: 10.1063/1.121260.
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.