Features of Localization of Radiation Defects and Electronic Excitations in the Field of Light-weight Sodium in Potassium Chloride Single Crystals
Shunkeyev K. Sh. 1, Tilep A. S. 1, Sagimbayeva Sh. Zh. 1, Ubaev Zh. K. 1, Lushchik A. 2
1K. Zhubanov Aktobe Regional University, Aktobe, Kazakhstan
2Institute of Physics, University of Tartu, Tartu, Estonia
Email: kuanyshbek.sh.01@gmail.com, aizhan261197@gmail.com, sshynar.2021@gmail.com, nczhiger@mail.ru, aleksandr.lushchik@ut.ee

PDF
The stability of KCl single crystals doped with sodium impurity ions was analyzed for the first time using absorption and luminescence spectroscopy methods. An indicator for detecting the central position of the sodium ion in the cation lattice site of a KCl-Na single crystal is the optical absorption bands induced by X-ray radiation with maxima at 6.35 and 3.5 eV (respectively, interstitial ions and chlorine atoms localized near impurity Na+ ions), as well as characteristic luminescence at 2.8 eV and 3.1 eV of exciton-like formations created by recombination near single Na+ or pair Na+-Na+ impurity ions, respectively. It has been shown that in KCl : Na crystals stored for a long time at room temperature, Na+ ions leave the regular cation sites and form nano-sized clusters. However, subsequent quenching of the "decayed" crystal at high temperatures (400-700oC) leads to partial reverse incorporation of sodium ions into the cation sites of the KCl:Na lattice. With increasing quenching temperature, the degree of restoration increases and reaches saturation (80% of the characteristics of freshly grown crystals). Keywords: KCl : Na single crystal, decay of KCl : Na - precipitation of sodium ion, thermal quenching - restoration of the KCl : Na lattice, X-irradiation, near-sodium radiation defects and luminescence.
  1. Ch. Lushchik, eds. R. Johnson, A. Orlov. In: Physics of Radiation Effects (North-Holland, Amsterdam, 1986)
  2. K. Song, R. Williams. Self-Trapped Excitons (Springer, Berlin, 1996), 2nd ed
  3. Ch. Lushchik, A. Lushchik. Phys. Solid State, 60 (8), 1487 (2018). DOI: 10.1134/S1063783418080164
  4. V. Kumar, Z. Luo. Photonics, 8 (71), 27 (2021). DOI: 10.3390/photonics8030071
  5. M. Konopka, P. Bilski, B. Obryk, B. Marczewska, P. Olko, M. Klosowski, W. Gieszczyk, Nonlinear Opt. Quantum Opt., 48, 133 (2017)
  6. Ch. Lushchik, J. Kolk, A. Lushchik, N. Lushchik, Phys. Stat. Solid. A, 86 (1), 219 (1984). DOI: 10.1002/pssa.2210860123
  7. A. Lushchik, Ch. Lushchik, E. Vasil'chenko, A.I. Popov, Low Temp. Phys., 44 (4), 269 (2018). DOI: 10.1063/1.5030448
  8. F. Froborg, A. Duffy. J. Phys. G: Nucl. Part. Phys. 47, 49 (2020). DOI: 10.1088/1361-6471/ab8e93
  9. Y. Takizawa, K. Kamada, M. Yoshino, J.K. Kim, N. Kutsuzawa, A. Yamaji, S. Kurosawa, Y. Yokota, H. Sato, S. Toyoda, Y. Ohashi, T. Hanada, V. Kochurikhin, A. Yoshikawa. Opt. Materials: X, 15 (2022). DOI: 10.1016/j.omx.2022.100159
  10. Y. Takizawa, K. Kamada, N. Kutsuzawa, J.K. Kim, M. Yoshino, A. Yamaji, S. Kurosawa, Y. Yokota, H. Sato, S. Toyoda, Y. Ohashi, T. Hanada, V. Kochurikhin, A. Yoshikawa. J. Crystal Growth, 573, 126287 (2021). DOI: 10.1016/j.jcrysgro.2021.126287
  11. C.J. Delbecq, E. Hutchinson, D. Schoemaker, E.L. Yasaitis, P.H. Yester. Phys. Rev. B, 187 (3), 1103 (1969)
  12. D. Schoemaker, J.L. Kolopus. Phys. Rev. B, 2 (4), 1148 (1970)
  13. D. Schoemaker, E.L. Yasaitis. Phys. Rev. B. 5, 4970 (1972)
  14. K. Shunkeyev, A. Tilep, Sh. Sagimbayeva, A. Lushchik, Z. Ubaev, L. Myasnikova, N. Zhanturina, Z. Aimaganbetova. Nucl. Instrum. Meth. B, 528, 20 (2022). DOI: 10.1016/j.nimb.2022.08.002
  15. K. Shunkeyev, Z. Aimaganbetova, L. Myasnikova, A. Maratova, Z. Ubaev. Nucl. Instrum. Meth. B, 509, 7 (2021). DOI: 10.1016/j.nimb.2021.10.010
  16. K. Shunkeyev, N. Zhanturina, Z. Aimaganbetova, A. Barmina, L. Myasnikova, Sh. Sagymbaeva, D. Sergeyev. Low Temp. Phys., 42 (7), 580 (2016). DOI: 10.1063/1.4960008
  17. K. Miyazaki, D. Nakauchi, T. Kato, N. Kawaguchi, T. Yanagida. Radiation Physics and Chemistry, 207, 110820 (2023). DOI: 10.1016/j.radphyschem.2023.110820
  18. K. Shunkeyev, A. Lushchik, L. Myasnikova, S. Sagimbaeva, Z. Ubaev, Z. Aimaganbetova. Low Temperature Physics, 45, 1127 (2019). DOI: 10.1063/1.5125992
  19. K. Shunkeyev, A. Maratova, A. Lushchik, L. Myasnikova. Integrated Ferroelectrics, 220, 140 (2021). DOI: 10.1080/10584587.2021.1921543
  20. K. Shunkeyev, D. Sergeyev, W. Drozdowski, K. Brylev, L. Myasnikova, A. Barmina, N. Zhanturina, S. Sagimbaeva, Z. Aimaganbetova. J. Phys.: Conf. Series, 830 (1), 012139 (2017). DOI: 10.1088/1742-6596/830/1/012138
  21. A. Laisaar, V. Shcherbakov, A. Kuznetsov. High Pressure Res., 3, 78 (1990). DOI: 10.1080/08957959008246035
  22. M. Ramirez, L. Bausa, S.W. Biernacki, A. Kaminska, A. Suchocki, M. Grinberg. Phys. Rev. B, 72, 224104 (2005). DOI: 10.1103/PhysRevB.72.224104
  23. M. Grinberg. J. Lumin., 131, 433 (2011). DOI: 10.1016/j.jlumin.2010.10.043
  24. S. Mahlik, M. Malinowski, M. Grinberg. Optical Materials, 33, 152 (2011). DOI: 10.1016/j.optmat.2011.02.001
  25. K. Shunkeyev, A. Tilep, A. Lushchik, Sh. Sagimbayeva. Eurasian J. Physics and Functional Materials, 6 (2), 139 (2022). DOI: 10.32523/ejpfm.2022060206
  26. K. Shunkeyev, E. Sarmukhanov, A. Bekeshev, S. Sagimbaeva, K. Bizhanova. J. Phys.: Conf. Series, 400 (5), (2012). DOI: 10.1088/1742-6596/400/5/052032
  27. K.Sh. Shunkeev, L.N. Myasnikova, Sh.Zh. Sagimbaeva, Zh.K. Ubaev, A.Yu. Litskevich, A.E. German, Sposob registratsii spektrov termostimulirovannoy luminestsentsii schelochnogaloidnykh kristallov, Patent of invention RK, N 34978 RK (published 02.04.2021) (in Russian). https://gosreestr.kazpatent.kz/Invention/ Details?docNumber=324704
  28. K.Sh. Shunkeev, Sh.Zh. Sagimbaeva, L.N. Myasnikova, A.G. Maratova, Sposob sinkhronnoy registratsii vremennoy i spektralnoy zavisimosti intensivnosti tunnelnoy luminestsentsii schelochnogaloidnykh kristallov, utility model patent of RK, N 6563 RK (published 02.04.2021) (in Russian). https://gosreestr.kazpatent.kz/ Utilitymodel/Details?docNumber=342135
  29. K. Shunkeyev, A. Tilep, Sh. Sagimbayeva, Z. Ubaev, A. Lushchik. Crystals, 13 (2), 364 (2023). DOI: 10.3390/cryst13020364
  30. A. Elango, T. Nurakhmetov. Phys. Stat. Sol. (b), 78 (2), 529 (1976)
  31. V.B. Fedoseev, A.V. Shishulin, E.K. Titaeva, E.N. Fedoseeva. Phys. of the Solid State, 58 (10), 2095 (2016). DOI: 10.1134/S1063783416100152
  32. S. Nakonechnyi, T. Karner, A. Lushchik, Ch. Lushchik, V. Babin, E. Feldbach, I. Kudryavtseva, P. Liblik, L. Pung, E. Vasil'chenko. J. Phys.: Condens. Mat., 8, 379 (2006)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru