Softening of lattice modes in the region of structural phase transitions in a composite Bi2(Sn0.7Fe0.3)2O7/Bi2Fe4O9
Udod L. V.1,2, Aplesnin S. S. 1,2, Sitnikov M. N. 2, Romanova O. B.1, Ablelbaki H.2
1Kirensky Institute of Physics, Federal Research Center KSC SB, Russian Academy of Sciences, Krasnoyarsk, Russia
2Siberian State University of Science and Technology, Krasnoyarsk, Russia
Email: luba@iph.krasn.ru

PDF
The composite compound Bi2(Sn0.7Fe0.3)2O7/Bi2Fe4O9 with a ratio of 91%/9% was obtained by solid-phase synthesis. The mutual influence of two different crystal structures on structural transitions was studied using X-ray diffraction, IR spectroscopy and sound attenuation coefficient. IR absorption spectra were studied in the temperature range 80-500 K and the frequency range 350-7000 cm-1. The types of vibrations of phonon modes are determined. The influence of the Bi2(Sn0.7Fe0.3)2O7 matrix on the phonon vibration modes of mullite Bi2Fe4O9 was established in the form of a frequency shift w = 634 cm-1, splitting of the mode w = 574 cm-1, and disappearance of the mode at the frequency w=812 cm-1. In the regions of phase transitions Bi2(Sn0.7Fe0.3)2O7 and Bi2Fe4O9, a softening of the IR spectra modes was found. The features of the temperature dependence of the sound attenuation Keywords: composite compound Bi2(Sn0.7Fe0.3)2O7/Bi2Fe4O9, phase transitions, IR absorption spectra, phonon modes, sound attenuation.
  1. T. Maity, S. Goswami, D. Bhattacharya, S. Roy. Phys. Rev. Lett., 110 (10), 107201 (2013). DOI: 10.1103/PhysRevLett.110.107201
  2. T. Maity, S. Roy. J. Magn. Magn. Mater., 494, 165783 (2020). DOI: 10.1016/j.jmmm.2019.165783
  3. Jungho Ryu, Shashank Priya, Kenji Uchino, Hyoun-ee Kim. J. Electroceramics, 8, 107 (2002). DOI: 10.1023/A:1020599728432
  4. L.G. Wang, G.B. Yu, C.M. Zhu, F.Z. Lv, F.C. Liu, W.J. Kong. J. Mater. Sci. Mater. Electron., 30, 20556 (2019). DOI: 10.1007/s10854-019-02460-0
  5. Y. Lin, P. Kang, H. Yang, G. Zhang, Z. Gou. Powder Technol., 284, 143 (2015). DOI: 10.1016/j.powtec.2015.04.072
  6. M. Salami, O. Mirzaee, A. Honarbakhsh-Raouf, S.A.N.A. Lavasani, A.K. Moghadam. Ceram. Int., 43, 14701 (2017). DOI: 10.1016/j.ceramint.2017.07.199
  7. Z.Y. Gao, Y.P. Pu, J. Wei, M.T. Yao, Q. Jin, H.Y. Zheng, Y.R. Wang. Phys. Status Solidi, 213, 2741 (2016). DOI: 10.1002/pssa.201600225
  8. Poonam Uniyal, K.L. Yadav. J. Alloys and Compounds, 492, 406 (2010). DOI: 10.1016/j.jallcom.2009.10.275
  9. Panda Alaka, Ramanujan Govindaraj. Condens. Matter, 3, 44 (2018). DOI: 10.3390/condmat3040044
  10. C.N.R. Rao, A. Sundaresan, R. Saha. J. Phys. Chem. Lett., 3, 2237 (2012). DOI: 10.1021/jz300688b
  11. R.D. Shannon, J.D. Bierlein, J.L. Gillson, G.A. Jones, A.W. Sleight. J. Phys. Chem. Solids, 41, 117 (1980). DOI: 10.1016/0022-3697(80)90041-4
  12. A. Walsh, G.W. Watson. Chem. Mater., 19, 5158 (2007). DOI: 10.1021/cm0714279
  13. L.V. Udod, S.S. Aplesnin, M.N. Sitnikov, M.S. Molokeev. FTT, 56, 1315 (2014). DOI: 10.1134/S1063783414070336
  14. L. Udod, S. Aplesnin, M. Sitnikov, O. Romanova, O. Bayukov, A. Vorotinov, D. Velikanov, G. Patrin. EPJP, 135, Article number: 776 (2020). DOI: 10.1140/epjp/s13360-020-00781-2
  15. S.S. Aplesnin, L.V. Udod, M.N. Sitnikov, O.B. Romanova. Ceramics International, 47 (2), 1704 (2021). DOI: 10.1016/j.ceramint.2020.08.287
  16. W.R. Cook, Jr., H. Jaffe. Phys. Rev., 88, 1426 (1952). DOI: 10.1103/PhysRev.88.1426
  17. E. Buixaderas, S. Kamba, J. Petzelt. Ferroelectrics, 308, 131 (2004). DOI: 10.1080/00150190490508909
  18. M. Hanawa, Y. Muraoka, T. Tayama, T. Sakakibara, J. Yamaura, Z. Hiroi. Phys. Rev. Lett., 87, 187001 (2001). DOI: 10.1103/PhysRevLett.87.187001
  19. A.W. Sleight, J.L. Gillson. Mater. Res. Bull., 6, 781 (1971). DOI: 10.1016/0025-5408(71)90114-0
  20. M.P. van Dijk, K.J. de Vries, A.J. Burggraaf. Solid State Ionics, 9-10, 913-920 (1983)
  21. M.A. Subramanian, B.H. Toby, A.P. Ramirez, W.J. Marshall, A.W. Sleight, G.H. Kwei. Science, 273, 81 (1996). DOI: 10.1126/science.273.5271.81
  22. N.P. Laverov, S.V. Yudintsev, T.S. Livshits, S.V. Stefanovsky, A.N. Lukinykh, R.C. Ewing. Geochem. Int., 48, 1 (2010). DOI: 10.1134/s0016702910010015
  23. O. Merka, D.W. Bahnemann, M. Wark. Catal. Today, 225, 102 (2013). DOI: 10.1016/j.cattod.2013.09.009
  24. S. Kamba, V. Porokhonskyy, A. Pashkin, A. Pashkin, V. Bovtun, J. Petzelt, J.C. Nino, S. Trolier-McKinstry, M.T. Lanagan, C.A. Randall. Phys. Rev. B, 66, 054106 (2002). DOI: 10.1016/S0955-2219(96)00187-2
  25. G. Catalan, J.F. Scott. Adv. Mater., 21, 2463 (2009). DOI: 10.1002/adma.200802849
  26. A.P. Pyatakov, A.K. Zvezdin, UFN, 182 (6), 593 (2012) (in Russian). DOI: 10.3367/UFNr.0182.201206b.0593
  27. Y.A. Park, K.M. Song, K.D. Lee, C.J. Won, N. Hur. Appl. Phys. Lett., 96, 092506 (2010). DOI: 10.1063/1.3339880
  28. D.P. Dutta, C. Sudakar, P.S.V. Mocherla, B.P. Mandal, O.D. Jayakumar, A.K. Tyagi. Mater. Chem. Phys., 135, 998e1004 (2012). DOI: 10.1016/j.matchemphys.2012.06.005
  29. M. Zhang, H. Yang, T. Xian, Z.Q. Wei, J.L. Jiang, Y.C. Feng, X.Q. Liu. J. Alloys Compd., 509, 809 (2011). DOI: 10.1016/j.jallcom.2010.09.097
  30. A. Kirsch, M.M. Murshed, F.J. Litterst, T.M. Gesing. J. Phys. Chem. C, 123 (5), 3161 (2019). DOI: 10.1021/ACS.JPCC.8B09698
  31. M.N. Iliev, A.P. Litvinchuk, V.G. Hadjiev, M.M. Gospodinov, V. Skumryev, E. Ressouche. Phys. Rev. B, 81, 024302 (2010). DOI: 10.1103/PhysRevB.81.024302
  32. N. Shamir, E. Gurewitz, H. Shaked. Acta Crystallogr. A, 34, 662 (1978). DOI:10.1107/S0567739478001412
  33. Z. Pchelkina, S. Streltsov. Phys. Rev. B, 88, 054424 (2013). DOI: 10.1103/PhysRevB.88.054424
  34. J. Zhao, T. Liu, Y. Xu, Y. He, W. Chen. Chem. Phys., 128, 388-391 (2011). DOI: 10.1016/j.matchemphys.2011.03.011
  35. S. Brown, H.C. Gupta, J.A. Alonso, M.J. Marti nez-Lope. Phys. Rev. B, 69, (2004) 054434-6. DOI:10.1103/PhysRevB.69.054434
  36. N.A. Hill. Annu. Rev. Mater. Res., 32, 1 (2002). DOI: 10.1146/annurev.matsci.32.101901.152309
  37. M. Roy, InduBala, S.K. Barbar. J. Therm. Anal. Calorim., 110, 559 (2012). DOI: 10.1007/s10973-012-2525-x
  38. X. Wu, J. Miao, Y. Zhao, X. Meng, X. Xu, S. Wang, Y. Jiang. Optoelectr. Adv. Mater. -RAPID Commun., 7, 116 (2013)
  39. S.S. Aplesnin, L.V. Udod, M.N. Sitnikov, D.A. Velikanov, M.N. Molokeev, O.B. Romanova, A.V. Shabanov. JMMM, 559, 169530 (2022). DOI: 10.1016/j.jmmm.2022.169530
  40. I.R. Evans, J.A.K. Howard, J.S.O. Evans. J. Mater. Chem., 13(9), 2098 (2003). DOI: 10.1039/B305211G
  41. Bruker AXS TOPAS V4: General profile and structure analysis software for powder diffraction data. --- User's Manual. Bruker AXS, Karlsruhe, Germany, 2008
  42. Manish Kumar Verma, Vinod Kumar, Tapas Das, Ravi Kumar Sonwani, Vishnu Shankar Rai, Dinesh Prajapati, Kedar Sahoo, Vishal Kumar Kushwaha, Asha Gupta, Kamdeo Mandal. J. Minerals and Materials Characterization and Eng., 9, 444 (2021). DOI: 10.4236/jmmce.2021.95030
  43. M.A. Subramanian, G. Aravamudan, G.V. Subba Rao. Prog. Solid State Chem., 15, 55 (1983). DOI: 10.1016/0079-6786(83)90001-8
  44. H.C. Gupta, S. Brown, N. Rani, V.B. Gohel, J. Raman Spectrosc., 32, 41 (2001). DOI: 10.1002/1097-4555(200101)32:1<41::AID-JRS664>3.0.CO;2-R
  45. M. Chen, D.B. Tanner, J.C. Nino. Phys. Rev. B, 72, 054303 (2005). DOI: 10.1103/PhysRevB.72.054303
  46. M. Verseils, A.P. Litvinchuk, J-B. Brubach, P. Roy, K. Beauvois, E. Ressouche, V. Skumryev, M. Gospodinov, V. Simonet, S. de Brion. Phys. Rev. B, 103, 174403 (2021). DOI: 10.1103/PhysRevB.103.174403
  47. D.J. Arenas, L.V. Gasparov, W. Qiu, J.C. Nino, C.P.D. Tanner. Phys. Rev. B, 82, 214302 (2010). DOI: 10.1103/PhysRevB.82.214302
  48. S.S. Aplesnin, L.V. Udod, M.N. Sitnikov, N.P. Shestakov. Ceram. Int., 42, 5177 (2016). DOI: 10.1016/j.ceramint.2015.12.040
  49. R.J. Betsch, W.B. White. Spectrochim. Acta, Part A, 34, 505 (1978). DOI: 10.1016/0584-8539(78)80047-6
  50. D. Voll, A. Beran, H. Schneider. Phys. Chem. Minerals, 33, 623 (2006). DOI: 10.1007/s00269-006-0108-8
  51. M. Chen, D.B. Tanner, J.C. Nino. Phys. Rev. B, 72, 054303 (2005). DOI: 10.1103/PhysRevB.72.054303
  52. W. Lewis, J.L. Payne, I.R. Evans, H.T. Stokes, B.J. Campbell, J.S.O. Evans. J. Am. Chem. Soc., 138, 8031 (2016). DOI: 10.1021/jacs.6b04947
  53. R.X. Silva, C.W.A. Paschoal, R.M. Almedia, M. Carvalho Castro Jr., A.P. Ayala, J.T. Auletta, M.W. Lufaso. Vib. Spectrosc., 64, 172 (2013). DOI: 10.1016/j.vibspec.2012.05.009
  54. Wei Huang, Binqing Zhu, Huaiying Zhou, Chaohao Hu, Yan Zhong. Advances in Engineering Research, 146, 309 (2018). DOI: creativecommons.org/licenses/by-nc/4.0/
  55. T.A. Vanderah, I. Levin, M.W. Lufaso. Eur. J. Inorg. Chem., 14, 2895 (2005). DOI: 10.1002/ejic.200500234
  56. Yun Liu, Ray Withers, Hai Binh Nguyen, Kim Elliot, Qijun Ren, Zhanghai Chen. J. Solid State Chem., 182, 2748 (2009). DOI: 10.1016/j.jssc.2009.07.007
  57. K.B. Tan, C.C. Khaw, C.K. Lee, Z. Zainal, G.C. Miles. J. Alloys Compd., 508, 457 (2010). DOI: 10.1016/j.jallcom.2010.08.093
  58. Weicheng Xu, Zhang Liu, Jianzhang Fang, Guangyin Zhou, Xiaoting Hong, Shuxing Wu, Ximiao Zhu, Yun Fang Chen, Chaoping Cen. Int. J. Photoenergy, 2013, Article ID 394079. DOI: 10.1155/2013/394079
  59. A.B. Medvedev, R.F. Trunin, UFN, 182, 829 (2012) (in Russian)
  60. K.A. Aleksandrov, A.T. Anistratov, B.V. Beznosikov, N.V. Fedoseeva, Fazovye perekhody v kristallakh galoidnykh soedineniy AVKhZ (Nauka, Novosibirsk, 1981), p. 265 (in Russian)
  61. G. Samara, D. Sakudo, R. Yoshimitsu. Phys. Rev. Lett., 35, 1767 (1975). DOI: 10.1103/PhysRevLett.35.1767
  62. J.T. Schick, Lai Jiang, Diomedes Saldana-Greco, A.M. Rappe. Phys. Rev. B, 89, 195304 (2014). DOI: 10.1103/PhysRevB.89.195304
  63. L.V. Udod, S.S. Aplesnin, M.N. Sitnikov, O.B. Romanova, M.N. Molokeev. J. Alloys Compound., 804, 281 (2019). DOI: 10.1016/j.jallcom.2019.07.020

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru