Softening of lattice modes in the region of structural phase transitions in a composite Bi2(Sn0.7Fe0.3)2O7/Bi2Fe4O9
Udod L. V.1,2, Aplesnin S. S. 1,2, Sitnikov M. N. 2, Romanova O. B.1, Ablelbaki H.2
1Kirensky Institute of Physics, Federal Research Center KSC SB, Russian Academy of Sciences, Krasnoyarsk, Russia
2Siberian State University of Science and Technology, Krasnoyarsk, Russia
Email: luba@iph.krasn.ru
The composite compound Bi2(Sn0.7Fe0.3)2O7/Bi2Fe4O9 with a ratio of 91%/9% was obtained by solid-phase synthesis. The mutual influence of two different crystal structures on structural transitions was studied using X-ray diffraction, IR spectroscopy and sound attenuation coefficient. IR absorption spectra were studied in the temperature range 80-500 K and the frequency range 350-7000 cm-1. The types of vibrations of phonon modes are determined. The influence of the Bi2(Sn0.7Fe0.3)2O7 matrix on the phonon vibration modes of mullite Bi2Fe4O9 was established in the form of a frequency shift w = 634 cm-1, splitting of the mode w = 574 cm-1, and disappearance of the mode at the frequency w=812 cm-1. In the regions of phase transitions Bi2(Sn0.7Fe0.3)2O7 and Bi2Fe4O9, a softening of the IR spectra modes was found. The features of the temperature dependence of the sound attenuation Keywords: composite compound Bi2(Sn0.7Fe0.3)2O7/Bi2Fe4O9, phase transitions, IR absorption spectra, phonon modes, sound attenuation.
- T. Maity, S. Goswami, D. Bhattacharya, S. Roy. Phys. Rev. Lett., 110 (10), 107201 (2013). DOI: 10.1103/PhysRevLett.110.107201
- T. Maity, S. Roy. J. Magn. Magn. Mater., 494, 165783 (2020). DOI: 10.1016/j.jmmm.2019.165783
- Jungho Ryu, Shashank Priya, Kenji Uchino, Hyoun-ee Kim. J. Electroceramics, 8, 107 (2002). DOI: 10.1023/A:1020599728432
- L.G. Wang, G.B. Yu, C.M. Zhu, F.Z. Lv, F.C. Liu, W.J. Kong. J. Mater. Sci. Mater. Electron., 30, 20556 (2019). DOI: 10.1007/s10854-019-02460-0
- Y. Lin, P. Kang, H. Yang, G. Zhang, Z. Gou. Powder Technol., 284, 143 (2015). DOI: 10.1016/j.powtec.2015.04.072
- M. Salami, O. Mirzaee, A. Honarbakhsh-Raouf, S.A.N.A. Lavasani, A.K. Moghadam. Ceram. Int., 43, 14701 (2017). DOI: 10.1016/j.ceramint.2017.07.199
- Z.Y. Gao, Y.P. Pu, J. Wei, M.T. Yao, Q. Jin, H.Y. Zheng, Y.R. Wang. Phys. Status Solidi, 213, 2741 (2016). DOI: 10.1002/pssa.201600225
- Poonam Uniyal, K.L. Yadav. J. Alloys and Compounds, 492, 406 (2010). DOI: 10.1016/j.jallcom.2009.10.275
- Panda Alaka, Ramanujan Govindaraj. Condens. Matter, 3, 44 (2018). DOI: 10.3390/condmat3040044
- C.N.R. Rao, A. Sundaresan, R. Saha. J. Phys. Chem. Lett., 3, 2237 (2012). DOI: 10.1021/jz300688b
- R.D. Shannon, J.D. Bierlein, J.L. Gillson, G.A. Jones, A.W. Sleight. J. Phys. Chem. Solids, 41, 117 (1980). DOI: 10.1016/0022-3697(80)90041-4
- A. Walsh, G.W. Watson. Chem. Mater., 19, 5158 (2007). DOI: 10.1021/cm0714279
- L.V. Udod, S.S. Aplesnin, M.N. Sitnikov, M.S. Molokeev. FTT, 56, 1315 (2014). DOI: 10.1134/S1063783414070336
- L. Udod, S. Aplesnin, M. Sitnikov, O. Romanova, O. Bayukov, A. Vorotinov, D. Velikanov, G. Patrin. EPJP, 135, Article number: 776 (2020). DOI: 10.1140/epjp/s13360-020-00781-2
- S.S. Aplesnin, L.V. Udod, M.N. Sitnikov, O.B. Romanova. Ceramics International, 47 (2), 1704 (2021). DOI: 10.1016/j.ceramint.2020.08.287
- W.R. Cook, Jr., H. Jaffe. Phys. Rev., 88, 1426 (1952). DOI: 10.1103/PhysRev.88.1426
- E. Buixaderas, S. Kamba, J. Petzelt. Ferroelectrics, 308, 131 (2004). DOI: 10.1080/00150190490508909
- M. Hanawa, Y. Muraoka, T. Tayama, T. Sakakibara, J. Yamaura, Z. Hiroi. Phys. Rev. Lett., 87, 187001 (2001). DOI: 10.1103/PhysRevLett.87.187001
- A.W. Sleight, J.L. Gillson. Mater. Res. Bull., 6, 781 (1971). DOI: 10.1016/0025-5408(71)90114-0
- M.P. van Dijk, K.J. de Vries, A.J. Burggraaf. Solid State Ionics, 9-10, 913-920 (1983)
- M.A. Subramanian, B.H. Toby, A.P. Ramirez, W.J. Marshall, A.W. Sleight, G.H. Kwei. Science, 273, 81 (1996). DOI: 10.1126/science.273.5271.81
- N.P. Laverov, S.V. Yudintsev, T.S. Livshits, S.V. Stefanovsky, A.N. Lukinykh, R.C. Ewing. Geochem. Int., 48, 1 (2010). DOI: 10.1134/s0016702910010015
- O. Merka, D.W. Bahnemann, M. Wark. Catal. Today, 225, 102 (2013). DOI: 10.1016/j.cattod.2013.09.009
- S. Kamba, V. Porokhonskyy, A. Pashkin, A. Pashkin, V. Bovtun, J. Petzelt, J.C. Nino, S. Trolier-McKinstry, M.T. Lanagan, C.A. Randall. Phys. Rev. B, 66, 054106 (2002). DOI: 10.1016/S0955-2219(96)00187-2
- G. Catalan, J.F. Scott. Adv. Mater., 21, 2463 (2009). DOI: 10.1002/adma.200802849
- A.P. Pyatakov, A.K. Zvezdin, UFN, 182 (6), 593 (2012) (in Russian). DOI: 10.3367/UFNr.0182.201206b.0593
- Y.A. Park, K.M. Song, K.D. Lee, C.J. Won, N. Hur. Appl. Phys. Lett., 96, 092506 (2010). DOI: 10.1063/1.3339880
- D.P. Dutta, C. Sudakar, P.S.V. Mocherla, B.P. Mandal, O.D. Jayakumar, A.K. Tyagi. Mater. Chem. Phys., 135, 998e1004 (2012). DOI: 10.1016/j.matchemphys.2012.06.005
- M. Zhang, H. Yang, T. Xian, Z.Q. Wei, J.L. Jiang, Y.C. Feng, X.Q. Liu. J. Alloys Compd., 509, 809 (2011). DOI: 10.1016/j.jallcom.2010.09.097
- A. Kirsch, M.M. Murshed, F.J. Litterst, T.M. Gesing. J. Phys. Chem. C, 123 (5), 3161 (2019). DOI: 10.1021/ACS.JPCC.8B09698
- M.N. Iliev, A.P. Litvinchuk, V.G. Hadjiev, M.M. Gospodinov, V. Skumryev, E. Ressouche. Phys. Rev. B, 81, 024302 (2010). DOI: 10.1103/PhysRevB.81.024302
- N. Shamir, E. Gurewitz, H. Shaked. Acta Crystallogr. A, 34, 662 (1978). DOI:10.1107/S0567739478001412
- Z. Pchelkina, S. Streltsov. Phys. Rev. B, 88, 054424 (2013). DOI: 10.1103/PhysRevB.88.054424
- J. Zhao, T. Liu, Y. Xu, Y. He, W. Chen. Chem. Phys., 128, 388-391 (2011). DOI: 10.1016/j.matchemphys.2011.03.011
- S. Brown, H.C. Gupta, J.A. Alonso, M.J. Marti nez-Lope. Phys. Rev. B, 69, (2004) 054434-6. DOI:10.1103/PhysRevB.69.054434
- N.A. Hill. Annu. Rev. Mater. Res., 32, 1 (2002). DOI: 10.1146/annurev.matsci.32.101901.152309
- M. Roy, InduBala, S.K. Barbar. J. Therm. Anal. Calorim., 110, 559 (2012). DOI: 10.1007/s10973-012-2525-x
- X. Wu, J. Miao, Y. Zhao, X. Meng, X. Xu, S. Wang, Y. Jiang. Optoelectr. Adv. Mater. -RAPID Commun., 7, 116 (2013)
- S.S. Aplesnin, L.V. Udod, M.N. Sitnikov, D.A. Velikanov, M.N. Molokeev, O.B. Romanova, A.V. Shabanov. JMMM, 559, 169530 (2022). DOI: 10.1016/j.jmmm.2022.169530
- I.R. Evans, J.A.K. Howard, J.S.O. Evans. J. Mater. Chem., 13(9), 2098 (2003). DOI: 10.1039/B305211G
- Bruker AXS TOPAS V4: General profile and structure analysis software for powder diffraction data. --- User's Manual. Bruker AXS, Karlsruhe, Germany, 2008
- Manish Kumar Verma, Vinod Kumar, Tapas Das, Ravi Kumar Sonwani, Vishnu Shankar Rai, Dinesh Prajapati, Kedar Sahoo, Vishal Kumar Kushwaha, Asha Gupta, Kamdeo Mandal. J. Minerals and Materials Characterization and Eng., 9, 444 (2021). DOI: 10.4236/jmmce.2021.95030
- M.A. Subramanian, G. Aravamudan, G.V. Subba Rao. Prog. Solid State Chem., 15, 55 (1983). DOI: 10.1016/0079-6786(83)90001-8
- H.C. Gupta, S. Brown, N. Rani, V.B. Gohel, J. Raman Spectrosc., 32, 41 (2001). DOI: 10.1002/1097-4555(200101)32:1<41::AID-JRS664>3.0.CO;2-R
- M. Chen, D.B. Tanner, J.C. Nino. Phys. Rev. B, 72, 054303 (2005). DOI: 10.1103/PhysRevB.72.054303
- M. Verseils, A.P. Litvinchuk, J-B. Brubach, P. Roy, K. Beauvois, E. Ressouche, V. Skumryev, M. Gospodinov, V. Simonet, S. de Brion. Phys. Rev. B, 103, 174403 (2021). DOI: 10.1103/PhysRevB.103.174403
- D.J. Arenas, L.V. Gasparov, W. Qiu, J.C. Nino, C.P.D. Tanner. Phys. Rev. B, 82, 214302 (2010). DOI: 10.1103/PhysRevB.82.214302
- S.S. Aplesnin, L.V. Udod, M.N. Sitnikov, N.P. Shestakov. Ceram. Int., 42, 5177 (2016). DOI: 10.1016/j.ceramint.2015.12.040
- R.J. Betsch, W.B. White. Spectrochim. Acta, Part A, 34, 505 (1978). DOI: 10.1016/0584-8539(78)80047-6
- D. Voll, A. Beran, H. Schneider. Phys. Chem. Minerals, 33, 623 (2006). DOI: 10.1007/s00269-006-0108-8
- M. Chen, D.B. Tanner, J.C. Nino. Phys. Rev. B, 72, 054303 (2005). DOI: 10.1103/PhysRevB.72.054303
- W. Lewis, J.L. Payne, I.R. Evans, H.T. Stokes, B.J. Campbell, J.S.O. Evans. J. Am. Chem. Soc., 138, 8031 (2016). DOI: 10.1021/jacs.6b04947
- R.X. Silva, C.W.A. Paschoal, R.M. Almedia, M. Carvalho Castro Jr., A.P. Ayala, J.T. Auletta, M.W. Lufaso. Vib. Spectrosc., 64, 172 (2013). DOI: 10.1016/j.vibspec.2012.05.009
- Wei Huang, Binqing Zhu, Huaiying Zhou, Chaohao Hu, Yan Zhong. Advances in Engineering Research, 146, 309 (2018). DOI: creativecommons.org/licenses/by-nc/4.0/
- T.A. Vanderah, I. Levin, M.W. Lufaso. Eur. J. Inorg. Chem., 14, 2895 (2005). DOI: 10.1002/ejic.200500234
- Yun Liu, Ray Withers, Hai Binh Nguyen, Kim Elliot, Qijun Ren, Zhanghai Chen. J. Solid State Chem., 182, 2748 (2009). DOI: 10.1016/j.jssc.2009.07.007
- K.B. Tan, C.C. Khaw, C.K. Lee, Z. Zainal, G.C. Miles. J. Alloys Compd., 508, 457 (2010). DOI: 10.1016/j.jallcom.2010.08.093
- Weicheng Xu, Zhang Liu, Jianzhang Fang, Guangyin Zhou, Xiaoting Hong, Shuxing Wu, Ximiao Zhu, Yun Fang Chen, Chaoping Cen. Int. J. Photoenergy, 2013, Article ID 394079. DOI: 10.1155/2013/394079
- A.B. Medvedev, R.F. Trunin, UFN, 182, 829 (2012) (in Russian)
- K.A. Aleksandrov, A.T. Anistratov, B.V. Beznosikov, N.V. Fedoseeva, Fazovye perekhody v kristallakh galoidnykh soedineniy AVKhZ (Nauka, Novosibirsk, 1981), p. 265 (in Russian)
- G. Samara, D. Sakudo, R. Yoshimitsu. Phys. Rev. Lett., 35, 1767 (1975). DOI: 10.1103/PhysRevLett.35.1767
- J.T. Schick, Lai Jiang, Diomedes Saldana-Greco, A.M. Rappe. Phys. Rev. B, 89, 195304 (2014). DOI: 10.1103/PhysRevB.89.195304
- L.V. Udod, S.S. Aplesnin, M.N. Sitnikov, O.B. Romanova, M.N. Molokeev. J. Alloys Compound., 804, 281 (2019). DOI: 10.1016/j.jallcom.2019.07.020
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.