Emission linewidth and α-factor of 1.55 μm-range vertical-cavity surface-emitting lasers based on InGaAs/InGaAlAs quantum wells
Blokhin S. A.
1, Kovach J. N.
1,2, Bobrov M.A.
1, Blokhin A. A.
1, Maleev N.A.
1, Kuzmenkov A. G.
1, Babichev A. V.
2, Novikov I. I.
2, Karachinsky L. Ya.
2, Kolodeznyi E. S.
2, Voropaev K. O.
3, Kulikov A.V.
2, Egorov А. Yu.
4, Ustinov V. M.
11Ioffe Institute, St. Petersburg, Russia
2ITMO University, St. Petersburg, Russia
3OAO OKB-Planeta, Veliky Novgorod, Russia
4Connector Optics LLC, St. Petersburg, Russia
Email: blokh@mail.ioffe.ru, j-n-kovach@mail.ioffe.ru, bobrov.mikh@gmail.com, aleksey.blokhin@mail.ioffe.ru, Maleev@beam.ioffe.ru, kuzmenkov@mail.ioffe.ru, andrey.babichev@connector-optics.com, Innokenty.Novikov@connector-optics.com, leonid.karachinsky@connector-optics.com, evgenii_kolodeznyi@corp.ifmo.ru, voropaevko@okbplaneta.ru, avkulikov@itmo.ru, anton@beam.ioffe.ru, vmust@beam.ioffe.ru
The emission linewidth of single-mode vertical-cavity surface-emitting lasers with an active region based on strained InGaAs/InGaAlAs quantum wells in the spectral range of 1.55 μm was studied. The removal of degeneracy in polarization of the fundamental mode (splitting of the resonance wavelength) and polarization switching (type I) associated with the transition from lasing via the short-wavelength mode to lasing via the long-wavelength one were observed. As the output optical power increased, the emission linewidth dropped to ~ 30 MHz for both orthogonally polarized modes and was limited by the residual linewidth. The value of the α-factor was estimated: for the short-wavelength mode it reached 5, while for the long-wavelength mode it increased to ~ 9. At an output optical power of more than 1 mW, the emission line broadening is observed, which can be associated with a gain saturation and the increased α-factor caused by a strong self-heating of the investigated laser. Keywords: VCSEL, polarization, linewidth, α-factor.
- A. Babichev, S. Blokhin, A. Gladyshev et al. IEEE Photonics Technol. Lett., 35 (6), 297 (2023). DOI: 10.1109/LPT.2023.3241001
- S.A. Blokhin, A.V. Babichev, A.G. Gladyshev et al. IEEE J. Quant. Electron., 58 (2), 2400115 (2022). DOI: 10.1109/jqe.2022.3141418
- M. Gebski, D. Dontsova, N. Haghighi et. al. OSA Continuum, 3 (7), 1952 (2020). DOI: 10.1364/osac.396242
- B.D. Padullaparthi, J. Tatum, K. Iga, VCSEL Industry: Communication and Sensing, The ComSoc Guides to Communications Technologie (Wiley-IEEE Press, Piscataway, NJ., USA, 2022). ISBN: 9781119782216
- Z. Ruan, Y. Zhu, P. Chen et al. J. Lightwave Technol., 38, 5100 (2020). DOI: 10.1109/jlt.2020.2999526
- L. Zhang, J. Van Kerrebrouck, R. Lin et al. J. Lightwave Technol., 37 (2), 380 (2019). DOI: 10.1109/JLT.2018.2851746
- A. Babichev, S. Blokhin, E. Kolodeznyi et al. Photonics, 10 (3), 268 (2023). DOI: 10.3390/photonics10030268
- S. Spiga, W. Soenen, A. Andrejew et al. J. Lightwave Technol., 35 (4), 727 (2017). DOI: 10.1109/JLT.2016.2597870
- S. Spiga, D. Schoke, A. Andrejew et al. J. Lightwave Technol., 35 (15), 3130 (2017). DOI: 10.1109/jlt.2017.2660444
- D. Ellafi, V. Iakovlev, A. Sirbu et al. Opt. Express, 22 (26), 32180 (2014). DOI: 10.1364/OE.22.032180
- A. Sirbu, G. Suruceanu, V. Iakovlev et al. IEEE Phot. Technol. Lett., 25 (16), 1555 (2013). DOI: 10.1109/LPT.2013.2271041
- A. Bacou, A. Rissons, J.-C. Mollier. Proc. SPIE, 6908, 69080F (2008). DOI: 10.1117/12.763054
- R. Shau, H. Halbritter, F. Riemenschneider et al. Electron. Lett., 39 (24), 1728 (2003). DOI: 10.1049/el:20031143
- N.A. Khan, K. Schires, A. Hurtado et al. IEEE J. Quantum Electron., 49 (11), 990 (2013). DOI: 10.1109/jqe.2013.2282759
- M. Ortsiefer, R. Shau, G. Bohm et al. Appl. Phys. Lett., 76 (16), 2179 (2000). DOI: 10.1063/1.126290
- S.A. Blokhin, M.A. Bobrov, A.A. Blokhin et al. Tech. Phys. Lett., 48 (14), 46 (2022). DOI: 10.21883/TPL.2022.14.55117.18942
- S.A. Blokhin, A.V. Babichev, L.Ya. Karachinsky et al., Kvant. elektron., 52 (10), 878 (2022) (in Russian)
- S.A. Blokhin, A.V. Babichev, L.Ya. Karachinsky et al. J. Opt. Technol., 89 (11), 681 (2022). DOI: 10.1364/JOT.89.000681
- S.A. Blokhin, M.A. Bobrov, N.A. Maleev et al. Appl. Phys. Lett., 105 (6), 061104 (2014). DOI: 10.1063/1.4892885
- N. Volet, V. Iakovlev, A. Sirbu et al. Proc. SPIE, 8432, 84320B (2012). DOI: 10.1117/12.922075
- L. Yu, Y.H. Chen, C.Y. Jiang et al. J. Appl. Phys., 111 (4), 043109 (2012). DOI: 10.1063/1.3682648
- L.A. Coldren, S.W. Corzine, M.L. Masanovic. Diode Lasers and Photonic Integrated Circuits (John Wiley \& Sons, Hoboken, NJ., USA, 2012). ISBN: 9780470484128
- N.M. Margalit, J. Piprek, S. Zhang et al. IEEE J. Sel. Top. Quant. Electron., 3 (2), 359 (1997). DOI: 10.1109/2944.605679
- N.A. Khan, T. Mahmood. J. Mod. Opt., 67 (16), 1334 (2020). DOI: 10.1080/09500340.2020.1845406
- H. Halbritter, R. Shau, F. Riemenschneider et al. Electron. Lett., 40 (20), 1266 (2004). DOI: 10.1049/el:20040173
- D. Burak, J.V. Moloney, R. Binder. IEEE J. Quant. Electron., 36 (8), 956 (2000). DOI: 10.1109/3.853556
- G. Van der Sande, J. Danckaert, I. Veretennicoff et al. Phys. Rev. A, 71 (6), 063801 (2005). DOI: 10.1103/PhysRevA.71.063801
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.