Broadband two-dimensional infrared spectroscopy with signal detection in visible range by nonlinear chirped-pulse upconversion
Stepanov E.A.1,2, Ivanov G. D.1,2, Zhdanov A. N.1, Voronin A. A.1,2, Shvedov A. S. 1, Savitsky I. V.1, Lanin A. A.1,2, Fedotov A. B.1,2
1Department of Physics, Lomonosov Moscow State University, Moscow, Russia
2Russian Quantum Center, Skolkovo, Russia
Email: a.b.fedotov@physics.msu.ru

PDF
The paper presents a technique for broadband two-dimensional infrared spectroscopy with signal detection in visible range by nonlinear chirped-pulse upconversion. This approach helps to avoid direct measurement of the mid-infrared signal that requires cryogenic technology, and instead uses low-cost high-sensitivity multichannel silicon linear arrays. This leads to a reduction by two orders of magnitude of the measurement time of a single two-dimensional spectrum, which makes it possible to observe the fast dynamics of complex molecular compounds. The use of a quasi-phase-cycling achieved by sub-cycle delay modulation suppresses scattering background by almost two orders of magnitude and increases the measurement speed twice compared to optical chopping. Numerical simulation using the density matrix formalism and analysis of its evolution based on the solution of the Bloch-Redfield equation effectively reproduces the features of the two-dimensional infrared spectrum of inorganic octacarbonyl dicobalt compound. Keywords: Two-dimensional mid-infrared spectroscopy, ultrashort mid-infrared pulses, upconversion.
  1. S. Mukamel. Principles of Nonlinear Optical Spectroscopy (Oxford University Press, NY., 1995)
  2. M.C. Asplund, M.T. Zanni, R.M. Hochstrasser. PNAS, 97 (15), 8219-8224 (2000). DOI: 10.1073/pnas.140227997
  3. P. Hamm, M. Lim, R.M. Hochstrasser. J. Phys. Chem. B, 102 (31), 6123?6138 (1998). DOI: 10.1021/jp9813286
  4. S. Mukamel, Y. Tanimura, P. Hamm. Acc. Chem. Res., 42 (9), 1207-1209 (2009). DOI: 10.1021/ar900227m
  5. P. Hamm, M. Zanni. Concepts and Methods of 2D Infrared Spectroscopy (Cambridge University Press, 2011). DOI: 10.1017/CBO9780511675935
  6. S.T. Cundiff, S. Mukamel. Phys. Today, 66, 44-49 (2013). DOI: 10.1063/PT.3.2047
  7. A.L. Le Sueur, R.E. Hornessa, M.C. Thielges. Analyst, 140, 4336-4349 (2015). DOI: 10.1039/C5AN00558B
  8. J. Helbing, P. Hamm. J. Opt. Soc. Am. B, 28 (1), 171-178 (2011). DOI: 10.1364/JOSAB.28.000171
  9. E.A. Stepanov, A.A. Lanin, A.A. Voronin, A.B. Fedotov, A.M. Zheltikov. Phys. Rev. Lett., 117 (4), 043901 (2016). DOI: 10.1103/PhysRevLett.117.043901
  10. E.A. Stepanov, A.N. Zhdanov, I.V. Savitsky, P.B. Glek, A.A. Lanin, A.B. Fedotov, A.M. Zheltikov, Kvant. elektron., 52 (3), 227-232 (2022) (in Russian). DOI: 10.1070/QEL18004
  11. R.L. Sweany, T.L. Brown. Inorg. Chem., 16 (2), 415?421 (1977). DOI: 10.1021/ic50168a037
  12. J.M. Anna, K.J. Kubarych. Chem. Phys., 133, 174506 (2010). DOI: 10.1063/1.3492724
  13. J.M. Anna, M.J. Nee, C.R. Baiz, R. McCanne, K.J. Kubarych. J. Opt. Soc. Am. B, 27, 382-393 (2010). DOI: 10.1364/JOSAB.27.000382
  14. M.F. DeCamp, L.P. DeFlores, K.C. Jones, A. Tokmakoff. Opt. Express, 15 (1), 233-241 (2007). DOI: 10.1364/OE.15.000233
  15. R. Bloem, S. Garrett-Roe, H. Strzalka, P. Hamm, P. Donaldson. Opt. Express, 18 (26), 27067-27078 (2010). DOI: 10.1364/OE.18.027067
  16. V. May, O. Kuhn. Charge and Energy Transfer Dynamics in Molecular Systems (Wiley-VCH Verlag GmbH \& Co. KGaA, 2011). DOI: 10.1002/9783527633791
  17. M.P. Mueller. Fundamentals of Quantum Chemistry: Molecular Spectroscopy and Modern Electronic Structure Computations (Springer New York, NY., 2007). DOI: 10.1007/b113924
  18. T. Jansen, S. Saito, J. Jeon, M. Cho. J. Chem. Phys., 150 (10), 100901 (2019). DOI: 10.1063/1.5083966
  19. C.R. Baiz, K.J. Kubarych, E. Geva, E.L. Sibert. J. Phys. Chem. A, 115 (21), 5354-5363 (2011). DOI: 10.1021/jp201641h
  20. G. Lindblad. Commun. Math. Phys., 48 (2), 119?130 (1976). DOI: 10.1007/BF01608499
  21. D. Manzano. AIP Advances, 10 (2), 025106 (2020). DOI: 10.1063/1.5115323
  22. J. Jeske, J.H. Cole. Phys. Rev. A, 87, 052138 (2013). DOI: 10.1103/PhysRevA.87.052138
  23. J. Jeske, David J. Ing, M.B. Plenio, S.F. Huelga, J.H. Cole. J. Chem. Phys., 142 (6), 064104 (2015). DOI: 10.1063/1.4907370

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru