Physics of the Solid State
Volumes and Issues
Effect of neutron irradiation on the elemental composition and structure of BiScO3--PbTiO3 ceramics
Smirnova E.P.1, Klimov V.N.2, Guk E.G. 1, Pankratiev P.A. 1, Zaitseva N.V.1, Sotnikov A.V.1, Mukhin E.E. 1
1Ioffe Institute, St. Petersburg, Russia
2Central Research Institute of Structural Materials Prometey, National Research Centre Kurchatov Institute, St. Petersburg, Russia
Email: esmirnoffa@gmail.com, Ais-berg87@mail.ru, elgrguk@gmail.com, pavel-pankratiev@yandex.ru, nvz47@yandex.ru, andrew.sotnikov2014@yandex.ru, e.mukhin@mail.ioffe.ru

PDF
Ceramics 0.64BiScO3-0.36PbTiO3 were synthesized and its radiation resistance was studied. The experiments on irradiation of ceramic samples with fast neutrons and gamma rays in a pool-type reactor were carried out to analyze possible radiation damage. The irradiation conditions in terms of the accumulated fluence of neutrons and gamma quanta (~5·1019 n/cm^2(γ/cm^2) at E>0.1 MeV), as well as the energy spectrum, are close to those expected at the location of piezoelectric motors using this ceramics which are being developed within the ITER project. The elemental composition and crystal structure of the ceramics were determined before and after irradiation. The experimental results demonstrate the stability of the composition to high doses of radiation. Keywords: piezoelectric ceramics, neutron irradiation, elemental composition, crystal structure.
  1. I. Favero, K. Karrai. Nature Photon. 3, 4, 201 (2009)
  2. X. Gao, J. Yang, J. Wu, X. Xin, Z. Li, X. Yuan, X. Shen, S. Dong. Adv. Mater. Technol. 5, 1, 1900716 (2019)
  3. N. Savage. Nature Photon. 2, 10, 636 (2008)
  4. T. Bifano. Nature Photon. 5, 1, 21 (2009)
  5. B. Jaffe, W.R. Cook, H. Jaffe. Piezoelectric ceramics. Academic Press, London (1971). 302 p
  6. N.J. Donnelly, T.R. Shrout, C.A. Randall. J. Am. Ceram. Soc. 90, 2, 490 (2007)
  7. T.R. Shrout, S.J. Zhang. J. Electroceram. 19, 1, 185 (2007)
  8. R.E. Eitel, C.A. Randall, T.R. Shrout, P.W. Rehrig, W. Hackenberger, S.-E. Park. Jpn J. Appl. Phys. 40, 10R, 5999 (2001)
  9. K. Shahzad, H. Li, Zhenrong Li, M. Nasir Khan. J. Alloys. Compounds 762, 780 (2018)
  10. J.G. Chen, Z.Q. Hu, H.D. Shi, M.Y. Li, S.X. Dong. J. Phys. D 45, 46, 465303 (2012)
  11. Z. Liu, C. Zhao, J.-F. Li, K. Wang, J. Wu. J. Mater Chem. C 6, 3, 456 (2018)
  12. H. Zhao, Y. Hou, X. Yu, M. Zheng, M. Zhu. Acta Mater. 181, 238 (2019)
  13. T.-L. Zhao, A.A. Bokov, J. Wu, H. Wang, C.-M. Wang, Y. Yu, C.-L. Wang, K. Zeng, Z.-G. Ye, S. Dong. Adv. Funct. Mater 29, 12, 1807920 (2019)
  14. E.E. Mukhin, V.M. Nelyubov, V.A. Yukish, E.P. Smirnova, V.A. Solovei, N.K. Kalinina, V.G. Nagaitsev, M.F. Valishin, A.R. Belozerova, S.A. Enin, A.A. Borisov, N.A. Deryabina, V.I. Khripunov, D.V. Portnov, N.A. Babinov, D.V. Dokhtarenko, I.A. Khodunov, V.N. Klimov, A.G. Razdobarin, S.E. Alexandrov, D.I. Elets, A.N. Bazhenov, I.M. Bukreev, A.P. Chernakov, A.M. Dmitriev, Y.G. Ibragimova, A.N. Koval, G.S. Kurskiev, A.E. Litvinov, K.O. Nikolaenko, D.S. Samsonov, V.A. Senichenkov, R.S. Smirnov, S.Y. Tolstyakov, I.B. Tereschenko, L.A. Varshavchik, N.S. Zhiltsov, A.N. Mokeev, P.V. Chernakov, P. Andrew, M. Kempenaars. Fusion Eng. Design 176, 9, 113017 (2022).
  15. C. Vorpahl, A. Alekseev, S. Arshad, T. Hatae, A. Khodak, J. Klabacha, F. Le Guern, E. Mukhin, S. Pak, C. Seon, M. Smith, E. Yatsuka, A. Zvonkov. Fusion Eng. Des. 123, 11, 712 (2017)
  16. A.N. Sinclair, A.M. Chertov. Ultrasonics 57, 1 (2015)
  17. E.E. Mukhin, E.P. Smirnova, N.A. Babinov, I.A. Khodunov, R.S. Smirnov, M.S. Kuligin. Tech. Phys. Lett. 48, 12, 4 (2022)
  18. M.G. Cain, P.M. Weaver, M.J. Reece. J. Mater. Chem. A 4, 27, 10394 (2016)
  19. R.E. Eitel, S.J. Zhang, T.R. Shrout, C.A. Randall, I. Levin. J. Appl. Phys. 96, 5, 2828 (2004)
  20. S. Chen, X. Dong, C. Mao, F. Cao. J. Am. Ceram. Soc. 89, 10, 3270 (2006)
  21. S.P. Solov'ev, I.I. Kuzmin, V.V. Zakurkin. Ferroelectrics 1, 1, 19 (1970)
  22. S.P. Soloviyov, V.Ya. Dudarev, V.V. Zakurkin, I.I. Kuzmin, Izv. AN SSSR, Ser. fiz.,25, 9, 1931 (1971). (in Russian)
  23. K. Okazaki. Ceramic engineering for dielectrics. Gakken-sha Publishing Co. Ltd, Tokyo (1969). 532 p
  24. V.V. Larionov, V.A. Varlachev, S. Xu. J. Hydrogen Energy 45, 30, 15294 (2020)
  25. M.J. Loughlin, N.P. Taylor. Recommended Plasma Scenarios for Activation Calculations. ITER Report ITER_D_2V3V8G v 1.1 (2009)
  26. The FISPACT-II User Manual / Eds M. Fleming, T. Stainer, M. Gilbert. UKAEA-R(18)001 (2018)
  27. TENDL-2017: TALYS-based evaluated nuclear data library (release date December 30, 2017).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru