Runaway electrons in a gas diode with a wedge-shaped cathode
Zubarev N. M. 1,2, Zubareva O. V. 1, Yalandin M. I. 1,2
1Institute of Electrophysics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
2Lebedev Physical Institute, Russian Academy of Sciences, Moscow, Russia
Email: nick@iep.uran.ru, olga@iep.uran.ru, yalandin@iep.uran.ru

PDF
The features of electron runaway in a gas diode with a wedge-shaped cathode providing a sharply inhomogeneous distribution of the electric field in the interelectrode gap are studied. It is shown that the character and conditions of runaway are qualitatively different for wedges with relatively large and small opening angles, i.e., in fact, for different degrees of field inhomogeneity. In the first case, the transition to the runaway mode is determined by the behavior of electrons in the immediate vicinity of their starting point, the vertex of the wedge-shaped cathode. For a wedge close in shape to a blade (opening angle less than 30o degrees), the relative contribution of the braking force for electrons in the gas increases with distance from the cathode, and their behavior at the periphery, near the anode, begins to play a key role in the analysis of runaway conditions. The influence of an external magnetic field on the geometry of the ionized region near the wedge vertex, starting from which the electrons become runaways, is also discussed. Keywords: Runaway electrons, subnanosecond gas breakdown, sharply inhomogeneous electric field, guiding magnetic field.
  1. C.T.R. Wilson. Proc. Phys. Soc. London, 37, 32D (1924)
  2. H. Dreicer. Phys. Rev., 115, 238 (1959). DOI: 10.1103/PhysRev.115.238
  3. A.V. Gurevich. Sov. Phys. JETP, 12, 904 (1960). http://jetp.ras.ru/cgi-bin/e/index/e/12/5/p904?a=list
  4. S. Frankel, V. Highland, T. Sloan, O. Van Dyck, W. Wales. Nucl. Instrum. Methods, 44, 345 (1966)
  5. Yu.L. Stankevich, N.S. Kalinin. Sov. Phys. Dokl., 12, 1042 (1968)
  6. G.A. Mesyats, Yu.I. Bychkov, V.V. Kremnev. Sov. Phys. Usp., 15 (3), 282 (1972). DOI: 10.1070/PU1972v015n03ABEH004969
  7. V.V. Kremnev, Yu.A. Kurbatov. Sov. Phys. Tech. Phys., 17, 626 (1972)
  8. L.V. Tarasova, L.N. Khudyakova, T.V. Loiko, V.A. Tsukerman. Sov. Phys. Tech. Phys., 19, 351 (1974)
  9. P.A. Bokhan, G.V. Kolbychev. Sov. Tech. Phys. Lett., 6, 418 (1980)
  10. V.F. Tarasenko, V.G. Shpak, S.A. Shunailov, M.I. Yalandin, V.M. Orlovskii, S.B. Alekseev. Tech. Phys. Lett., 29, 879 (2003). DOI: 10.1134/1.1631351
  11. N.A. Ashurbekov, K.O. Iminov, V.S. Kobzeva, O.V. Kobzev. Tech. Phys. Lett., 33, 517 (2007). DOI: 10.1134/S1063785007060211
  12. G.A. Mesyats, M.I. Yalandin, K.A. Sharypov, V.G. Shpak, S.A. Shunailov. IEEE Trans. Plasma Sci., 36, 2497 (2008). DOI: 10.1109/TPS.2008.2005884
  13. Y. Akishev, G. Aponin, V. Karalnik, A. Petryakov, N. Trushkin. J. Phys. D: Appl. Phys., 51, 394003 (2018). DOI: 10.1088/1361-6463/aad704
  14. T. Shao, R. Wang, C. Zhang, P. Yan. High Voltage, 3 (1), 14 (2018). DOI: 10.1049/hve.2016.0014
  15. S.N. Ivanov, V.V. Lisenkov. J. Appl. Phys., 124, 103304 (2018). DOI: 10.1063/1.5024974
  16. V. Tarasenko. Plasma Sources Sci. Technol., 29, 034001 (2020). DOI: 10.1088/1361-6595/ab5c57
  17. V.F. Tarasenko, E.K. Baksht, D.V. Beloplotov, A.G. Burachenko, I.D. Kostyrya, M.I. Lomaev, D.V. Rybka, D.A. Sorokin. JETP Lett., 102, 350 (2015). DOI: 10.1134/S0021364015180149
  18. A. Kozyrev, V. Kozhevnikov, M. Lomaev, D. Sorokin, N. Semeniuk, V. Tarasenko. Europhys. Lett., 114, 45001 (2016). DOI: 10.1209/0295-5075/114/45001
  19. N.M. Zubarev, V.Yu. Kozhevnikov, A.V. Kozyrev, G.A. Mesyats, N.S. Semeniuk, K.A. Sharypov, S.A. Shunailov, M.I. Yalandin. Plasma Sources Sci. Technol., 29, 125008 (2020). DOI: 10.1088/1361-6595/abc414
  20. G.A. Mesyats, E.A. Osipenko, K.A. Sharypov, V.G. Shpak, S.A. Shunailov, M.I. Yalandin, N.M. Zubarev. IEEE Electron Device Lett., 43, 627 (2022). DOI: 10.1109/LED.2022.3155173
  21. G.A. Mesyats, M.S. Pedos, S.N. Rukin, V.V. Rostov, I.V. Romanchenko, A.G. Sadykova, K.A. Sharypov, V.G. Shpak, S.A. Shunailov, M.R. Ul'masculov, M.I. Yalandin. Appl. Phys. Lett., 112, 163501 (2018). DOI: 10.1063/1.5025751
  22. V.Yu. Kozhevnikov, A.V. Kozyrev, N.S. Semeniuk. Rus. Phys. J., 60, 1425 (2017). DOI: 10.1007/s11182-017-1232-2
  23. G.V. Naidis, V.F. Tarasenko, N.Yu. Babaeva, M.I. Lomaev. Plasma Sources Sci. Technol., 27, 013001 (2018). DOI: 10.1088/1361-6595/aaa072
  24. G.A. Mesyats, M.I. Yalandin, N.M. Zubarev, A.G. Sadykova, K.A. Sharypov, V.G. Shpak, S.A. Shunailov, M.R. Ulmaskulov, O.V. Zubareva, A.V. Kozyrev, N.S. Semeniuk. Appl. Phys. Lett., 116, 063501 (2020). DOI: 10.1063/1.5143486
  25. S.N. Ivanov, V.V. Lisenkov, Yu.I. Mamontov. Plasma Sources Sci. Technol., 30, 075021 (2021). DOI: 10.1088/1361-6595/abf31f
  26. S.N. Ivanov. Plasma Sources Sci. Technol., 31, 055001 (2022). DOI: 10.1088/1361-6595/ac6693
  27. E. Kunhardt, W. Byszewski. Phys. Rev. A, 21 (6), 2069 (1980). DOI: 10.1103/PhysRevA.21.2069
  28. L.P. Babich, T.V. Loiko, V.A. Tsukerman. Sov. Phys. Usp., 33 (7), 521 (1990). DOI: 10.1070/PU1990v033n07ABEH002606
  29. L.P. Babich. High-Energy Phenomena in Electric Discharges in Dense Gases (Futurepast, Arlington, TX, USA, 2003)
  30. D. Levko, S. Yatom, V. Vekselman, J.Z. Gleizer, V.Tz. Gurovich, Ya.E. Krasik. J. Appl. Phys., 111, 013303 (2012). DOI: 10.1063/1.3675527
  31. S. Yatom, A. Shlapakovski, L. Beilin, E. Stambulchik, S. Tskhai, Y.E. Krasik. Plasma Sources Sci. Technol., 25, 064001 (2016). DOI: 10.1088/0963-0252/25/6/064001
  32. E.V. Oreshkin, S.A. Barengolts, S.A. Chaikovsky, V.I. Oreshkin. Phys. Plasmas, 22, 123505 (2015). DOI: 10.1063/1.4936826
  33. G.A. Mesyats, Yu.I. Mamontov, I.V. Vasenina. Bull. Lebedev Phys. Institute, 49, 336 (2022). DOI: 10.3103/S1068335622100074
  34. E.H. Baksht, A.G. Burachenko, V.Yu. Kozhevnikov, A.V. Kozyrev, I.D. Kostyrya, V.F. Tarasenko. J. Phys. D: Appl. Phys., 43, 305201 (2010). DOI: 10.1088/0022-3727/43/30/305201
  35. Yu.D. Korolev, G.A. Mesyats, Fizika impul'snogo proboya gazov (Nauka, M., 1991) (in Russian)
  36. J.R. Dwyer, D.M. Smith, S.A. Cummer. Space Sci. Rev., 173, 133 (2012). DOI: 10.1007/s11214-012-9894-0
  37. G.A. Mesyats. Phys. Usp., 49, 1045 (2006). DOI: 10.1070/PU2006v049n10ABEH006118
  38. V.V. Lisenkov, S.N. Ivanov, Y.I. Mamontov, I.N. Tikhonov. Tech. Phys., 63 (12), 1872 (2018). DOI: 10.1134/S1063784218120095
  39. K.I. Bakhov, L.P. Babich, I.M. Kutsyk. IEEE Trans. Plasma Sci., 28, 1254 (2000). DOI: 10.1109/27.893314
  40. L.R. Peterson, A.E.S. Green. J. Phys. B: At. Mol. Phys., 1 (6), 1131 (1968). DOI: 10.1088/0022-3700/1/6/317
  41. G.A. Mesyats, M.I. Yalandin, A.G. Reutova, K.A. Sharypov, V.G. Shpak, S.A. Shunailov. Plasma Phys. Rep., 38, 29 (2012). DOI: 10.1134/S1063780X11110055
  42. M.V. Erofeev, E.K. Baksht, V.F. Tarasenko, Y.V. Shut'ko. Tech. Phys., 58, 200 (2013). DOI: 10.1134/S1063784213020060
  43. T. Shao, V.F. Tarasenko, C. Zhang, E.K. Baksht, P. Yan, Y.V. Shut'ko. Laser Part. Beams, 30, 369 (2012). DOI: 10.1017/S0263034612000201
  44. N.M. Zubarev, M.I. Yalandin, G.A. Mesyats, S.A. Barengolts, A.G. Sadykova, K.A. Sharypov, V.G. Shpak, S.A. Shunailov, O.V. Zubareva. J. Phys. D: Appl. Phys., 51, 284003 (2018). DOI: 10.1088/1361-6463/aac90a
  45. D.V. Beloplotov, V.F. Tarasenko, D.A. Sorokin, V.A. Shklyaev. Tech. Phys., 66 (4), 548 (2021). DOI: 10.1134/S1063784221040046
  46. V.F. Tarasenko, D.V. Beloplotov, D.A. Sorokin. Tech. Phys., 67 (5), 586 (2022). DOI: 10.21883/TP.2022.05.53674.317-21
  47. H. Bethe. Ann. Phys., 397 (3), 325 (1930). DOI: 10.1002/andp.19303970303
  48. N.M. Zubarev, G.A. Mesyats, M.I. Yalandin. JETP Lett., 105 (8), 537 (2017). DOI: 10.1134/S002136401708015X
  49. N.M. Zubarev, O.V. Zubareva, M.I. Yalandin. Electronics, 11, 2771 (2022). DOI: 10.3390/electronics11172771
  50. S.Y. Belomyttsev, I.V. Romanchenko, V.V. Rostov. Russ. Phys. J., 51, 299 (2008). DOI: 10.1007/s11182-008-9052-z
  51. M.A. Gashkov, N.M. Zubarev, O.V. Zubareva, G.A. Mesyats, K.A. Sharypov, V.G. Shpak, S.A. Shunailov, M.I. Yalandin. JETP Lett., 113 (6), 370 (2021). DOI: 10.1134/S0021364021060059
  52. A.N. Tkachev, S.I. Yakovlenko. Tech. Phys. Lett., 29, 683 (2003). DOI: 10.1134/1.1606788

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru