Struchkov A. I.
1, Karabeshkin K. V.
1, Karaseov P. A.
1, Titov A. I.
11Peter the Great Saint-Petersburg Polytechnic University, St. Petersburg, Russia
Email: andrei.struchckov@yandex.ru, yanikolaus@yandex.ru, platon.karaseov@spbstu.ru, andrei.titov@rphf.spbstu.ru
Collision cascade density is one of the most important parameters that determine radiation damage accumulation in semiconductors under ion bombardment. We perform calculation of collision cascade parameters formed in β-Ga2O3 by irradiation with 1.3 keV/amu atomic F, P, and molecular PF4 ions using two different methods: the method considering sub-cascade formation, and by calculation an average number of vacancies in spheres of fixed radius. The calculated results are compared with experimental data on damage accumulation in β-Ga2O3 under irradiation with aforementioned ions. It is shown that both methods qualitatively predict the effect of collision cascade density on radiation damage accumulation in gallium oxide. Fractal nature of cascades formed in β-Ga2O3 is established, corresponding fractal dimension is calculated. Keywords: Gallium oxide, β-Ga2O3, ion irradiation, defect engineering, collision cascade density.
- I.A. Abroyan, A.N. Andronov, A.I. Titov. Physical Foundations of Electron- and Ion-Beam Technology (Vysshaya Shkola, Moscow, 1984) p. 317
- W. Wesch, E. Wendler. Ion Beam Modification of Solids: Ion-Solid Interaction and Radiation Damage (Springer Cham, 2016)
- D.A. Thompson. Radiat. Eff., 56, 105 (1981)
- J.A. Davies. Ion Implantation and Beam Processing, ed. by J.S. Williams and J.M. Poate (N. Y., Academic, 1984)
- L.M. Howe, M.H. Rainville, H.K. Haugen, D.A. Thompson. Nucl. Instrum. Meth., 170, 419 (1980)
- S.O. Kucheyev, A.Yu. Azarov, A.I. Titov, P.A. Karaseov, T.M. Kuchumova. J. Phys. D: Appl. Phys., 42, 085309 (2009)
- A.I. Titov, S.O. Kucheyev, V.S. Belyakov, A.Yu. Azarov. J. Appl. Phys., 90, 3867 (2001)
- A.Yu. Azarov, A.I. Titov. Semiconductors, 41 (1), 5 (2007)
- A.I. Titov, A.Yu. Azarov, L.M. Nikulina, S.O. Kucheyev. Nucl. Instrum. Meth. Phys. Res. B, B256, 207 (2007)
- J.B. Wallace, L.B. Bayu Aji, L. Shao, S.O. Kucheyev. Phys. Rev. Lett., 120, 216101 (2018)
- A.Yu. Azarov, A.I. Titov, P.A. Karaseov, A. Hallen. Nucl. Instrum. Meth. Phys. Res. B, B267, 1247 (2009)
- L.B. Bayu Aji, J.B. Wallace, S.O. Kucheyev. Sci. Rep., 7, 44703 (2017)
- A.Yu. Azarov, S.O. Kucheyev, A.I. Titov, P.A. Karaseov. J. Appl. Phys., 102, 083547 (2007)
- A.Yu. Azarov, A.I. Titov, P.A. Karaseov, S.O. Kucheyev, A. Hallen, A.Yu. Kuznetsov, B.G. Svensson, A.P. Pathak. Vacuum, 84, 1058 (2010)
- P.A. Karaseov, K.V. Karabeshkin, A.I. Titov, Mohammad W. Ullah, A. Kuronen, F. Djurabekova, K. Nordlund, G.M. Ermolaeva, V.B. Shilov. J. Phys. D: Appl. Phys., 50, 505110 (2017)
- A.I. Titov, P.A. Karaseov, V.S. Belyakov, K.V. Karabeshkin, A.V. Arkhipov, S.O. Kucheyev, A.Yu. Azarov. Vacuum, 86, 1638 (2012)
- P.A. Karasev, K.V. Karabeshkin, A.I. Struchkov, A.I. Pechnikov, V.I. Nikolaev, V.D. Andreeva, A.I. Titov. FTP, 56 (9), 882 (2022). (in Russian)
- K.V. Karabeshkin, A.I. Struchkov, A.I. Titov, A.Yu. Azarov, D.S. Gogova, P.A. Karaseov. Int. Youth Conf. on Electronics, Telecommunications and Information Technologies [(Springer Proceedings in Physics, 268, Springer, Cham, 2022)]
- F. Shi, H. Qiao. Nano Select, Preparations, properties and applications of gallium oxide nanomaterials --- A review, 3, 348 (2022)
- S.J. Pearton, F. Ren, M. Tadjer, J. Kim. J. Appl. Phys., 124, 220901 (2018)
- S.J. Pearton, F. Ren, M. Mastro. Gallium Oxide. Technology, Devices and Applications (Elsevier Inc., 2019)
- J.F. Ziegler, M.D. Ziegler, J.P. Biersack. Nucl. Instrum. Meth. B, 268, 1818 (2010)
- J.B. Wallace, L.B. Bayu Aji, L. Shao, S.O. Kucheyev. Sci. Rep., 7, 17574 (2017)
- K.B. Winterbon. Rad. Eff., 60, 199 (1982)
- K.B. Winterbon, H.M. Urbassek, P. Sigmund, A. Gras Marti. Phys. Scripta, 36, 689 (1987)
- K. Schmid. Rad. Eff., 17, 201 (1973).
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.