Gunn generation mode in a resonator based on an array of ordered carbon nanotubes (CNTs)
Zolotovskii I.O. 1, Kadochkin A. S. 1, Panyaev I.S. 1, Rozhleys I.A.1,2, Sannikov D.G. 1
1Ulyanovsk State University, Ulyanovsk, Russia
2System Integration Company, Moscow, Russia
Email: panyaev.ivan@rambler.ru, sven4500@mail.ru, sannikov-dg@yandex.ru

PDF
We find and study the generation regime of microwave waves in a model resonator cavity based on an array of ordered semiconductor carbon nanotubes. Within the framework of the phenomenological approach, the Gunn effect was discovered for aligned carbon nanotubes with a length of 25-150 μm, the influence of the main parameters (changes in the electric field, the distance between the electrodes, the voltage at the contacts, etc.) was studied and it was shown that the electronic efficiency during lasing can reach 13%. The results obtained can be used to design new resonator structures such as compact microwave amplifiers and emitters based on ordered arrays of nanotubes. Keywords: Gunn effect, carbon nanotube (CNT), resonator, generation.
  1. D.P. Tsarapkin. Generatory SVCH na diodakh Ganna (M., Radio i svyaz', 1982). (in Russian)
  2. M.E. Levinstein, Yu.K. Pozhela, M.S. Shur. Gunn Effect (M., Sov. radio, 1975). (in Russian)
  3. G.I. Veselov. Mikroelektronnye ustrojstva SVCH (M., Vyssh. shk., 1988). (in Russian)
  4. A.S. Maksimenko, G.Y. Slepyan. Phys. Rev. Lett., 84, 362 (2000). https://doi.org/10.1103/PhysRevLett.84.362
  5. C. Zhou, J. Kong, E. Yenilmez, H. Dai. Science, 290, 1552 (2000). https://doi.org/10.1126/SCIENCE.290.5496.1552
  6. E. Pop, D. Mann, J. Cao, Q. Wang, K. Goodson, H. Dai. Phys. Rev. Lett., 95, 155505 (2005). https://doi.org/10.1103/PhysRevLett.95.155505
  7. G. Buchs, P. Ruffieux, P. Groning, O. Groning. Appl. Phys. Lett., 93, 073115 (2008). https://doi.org/10.1063/1.2975177/336360
  8. S.W. Lee, A. Kornblit, D. Lopez, S.V. Rotkin, A.A. Sirenko, H. Grebel. Nano Lett., 9, 1369 (2009). https://doi.org/10.1021/nl803036a
  9. M. Ahlskog, O. Herranen, A. Johansson, J. Leppaniemi, D. Mtsuko. Phys. Rev. B, 79, 155408 (2009). https://doi.org/10.1103/PhysRevB.79.155408
  10. M. Rinkio, A. Johansson, V. Kotimaki, P. Torma. ACS Nano, 4, 3356 (2010). https://doi.org/10.1021/nn100208v
  11. K.A. Shah, M.S. Parvaiz. Superlatt. Microstruct., 100, 375 (2016). https://doi.org/10.1016/J.SPMI.2016.09.037
  12. M. Ahlskog, O. Herranen, J. Leppaniemi, D. Mtsuko. Eur. Phys. J. B, 95, 130 (2022). https://doi.org/10.1140/EPJB/S10051-022-00392-Z
  13. S. Jung, R. Hauert, M. Haluska, C. Roman, C. Hierold. Sensors Actuators B: Chem., 331, 129406 (2021). https://doi.org/10.1016/J.SNB.2020.129406
  14. T.D. Yuzvinsky, W. Mickelson, S. Aloni, G.E. Begtrup, A. Kis, A. Zettl. Nano Lett., 6, 2718 (2006). https://doi.org/10.1021/nl061671j
  15. S. Choudhary, G. Saini, S. Qureshi. Mod. Phys. Lett. B, 28, 1450007 (2014). https://doi.org/10.1142/S0217984914500079
  16. S.A. Evlashin, M.A. Tarkhov, D.A. Chernodubov, A.V. Inyushkin, A.A. Pilevsky, P.V. Dyakonov, A.A. Pavlov, N.V. Suetin, I.S. Akhatov, V. Perebeinos. Phys. Rev. Appl., 15, 054057 (2021). https://doi.org/10.1103/PhysRevApplied.15.054057
  17. R. Zhang, Y. Zhang, F. Wei. Chem. Soc. Rev., 46, 3661 (2017). https://doi.org/10.1039/C7CS00104E
  18. M. He, S. Zhang, J. Zhang. Chem. Rev., 120, 12592 (2020). https://doi.org/10.1021/ACS.CHEMREV.0C00395
  19. L. Liu, J. Han, L. Xu, J. Zhou, C. Zhao, S. Ding, H. Shi, M. Xiao, L. Ding, Z. Ma, C. Jin, Z. Zhang, L.M. Peng. Science, 368, 850 (2020). https://doi.org/10.1126/science.aba5980
  20. S. Shekhar, P. Stokes, S.I. Khondaker. ACS Nano, 5, 1739 (2011). https://doi.org/10.1021/nn102305z
  21. J. Kimbrough, L. Williams, Q. Yuan, Z. Xiao. Micromachines, 12 (1), 12 (2021). https://doi.org/10.3390/MI12010012
  22. M.J. Biercuk, S. Ilani, C.M. Marcus, P.L. McEuen. Electrical transport in single-wall carbon nanotubes (In: Topics Appl. Phys., Springer, Berlin, Heidelberg, 2008) p. 455. https://doi.org/10.1007/978-3-540-72865-8_15
  23. V. Perebeinos, J. Tersoff, P. Avouris. Nano Lett., 6, 205 (2006). https://doi.org/10.1021/nl052044h
  24. T. Durkop, S.A. Getty, E. Cobas, M.S. Fuhrer. Nano Lett., 4, 35 (2004). https://doi.org/10.1021/NL034841Q
  25. M. Shur. Physics of Semiconductor Devices (Prentice Hall, 1990)
  26. C. Schonenberger, A. Bachtold, C. Strunk, J.P. Salvetat, L. Forro. Appl. Phys. A: Mater. Sci. Process., 69, 283 (1999). https://doi.org/10.1007/s003390051003
  27. B. Stojetz, C. Hagen, C. Hendlmeier, E. Ljubovic, L. Forro, C. Strunk. New J. Phys., 6, 27 (2004). https://doi.org/10.1088/1367-2630/6/1/027
  28. J.F. Dayen, T.L. Wade, M. Konczykowski, J.E. Wegrowe, X. Hoffer. Phys. Rev. B, 72, 073402 (2005). https://doi.org/10.1103/PHYSREVB.72.073402
  29. R. Jago, R. Perea-Causin, S. Brem, E. Malic. Nanoscale, 11, 10017 (2019). https://doi.org/10.1039/c9nr01714c
  30. E. Decrossas, M.A. El Sabbagh, V.F. Hanna, S.M. El-Ghazaly. IEEE Trans. Electromagn. Compat., 54, 81 (2012). https://doi.org/10.1109/TEMC.2011.2174788
  31. J. Wu, L. Kong. Appl. Phys. Lett., 84, 4956 (2004). https://doi.org/10.1063/1.1762693
  32. J.M. Marulanda, A. Srivastava. Phys. Status Solidi B, 245 (11), 2558 (2008). https://doi.org/10.1002/PSSB.200844259
  33. R.S. Lee, H.J. Kim, J.E. Fischer, A. Thess, R.E. Smalley. Nature, 388, 255 (1997). https://doi.org/10.1038/40822
  34. M. Radosavljevic, J. Appenzeller, P. Avouris, J. Knoch. Appl. Phys. Lett., 84, 3693 (2004). https://doi.org/10.1063/1.1737062
  35. L. Duclaux. Carbon (N.Y.), 40, 1751 (2002). https://doi.org/10.1016/S0008-6223(02)00043-X
  36. M. Shur. GaAs devices and circuits (Plenum Press, N.Y., 1987)
  37. J. Li, Q. Ye, A. Cassell, H.T. Ng, R. Stevens, J. Han, M. Meyyappan. Appl. Phys. Lett., 82, 2491 (2003). https://doi.org/10.1063/1.1566791
  38. B. Kim, M.L. Geier, M.C. Hersam, A. Dodabalapur. Sci. Rep., 7, 39627 (2017). https://doi.org/10.1038/srep39627
  39. Q. Bao, K.P. Loh. ACS Nano, 6, 3677 (2012). https://doi.org/10.1021/NN300989G
  40. Y. Zhou, A. Gaur, S.H. Hur, C. Kocabas, M.A. Meitl, M. Shim, J.A. Rogers. Nano Lett., 4, 2031 (2004). https://doi.org/10.1021/nl048905o
  41. A.I. Vorobyova. Uspekhi fiz. nauk, 179, 243 (2009). (in Russian)
  42. R. Rosen, W. Simendinger, C. Debbault, H. Shimoda, L. Fleming, B. Stoner, O. Zhou. Appl. Phys. Lett., 76, 1668 (2000). https://doi.org/10.1063/1.126130

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru