Gunn generation mode in a resonator based on an array of ordered carbon nanotubes (CNTs)
Zolotovskii I.O.
1, Kadochkin A. S.
1, Panyaev I.S.
1, Rozhleys I.A.
1,2, Sannikov D.G.
11Ulyanovsk State University, Ulyanovsk, Russia
2System Integration Company, Moscow, Russia
Email: panyaev.ivan@rambler.ru, sven4500@mail.ru, sannikov-dg@yandex.ru
We find and study the generation regime of microwave waves in a model resonator cavity based on an array of ordered semiconductor carbon nanotubes. Within the framework of the phenomenological approach, the Gunn effect was discovered for aligned carbon nanotubes with a length of 25-150 μm, the influence of the main parameters (changes in the electric field, the distance between the electrodes, the voltage at the contacts, etc.) was studied and it was shown that the electronic efficiency during lasing can reach 13%. The results obtained can be used to design new resonator structures such as compact microwave amplifiers and emitters based on ordered arrays of nanotubes. Keywords: Gunn effect, carbon nanotube (CNT), resonator, generation.
- D.P. Tsarapkin. Generatory SVCH na diodakh Ganna (M., Radio i svyaz', 1982). (in Russian)
- M.E. Levinstein, Yu.K. Pozhela, M.S. Shur. Gunn Effect (M., Sov. radio, 1975). (in Russian)
- G.I. Veselov. Mikroelektronnye ustrojstva SVCH (M., Vyssh. shk., 1988). (in Russian)
- A.S. Maksimenko, G.Y. Slepyan. Phys. Rev. Lett., 84, 362 (2000). https://doi.org/10.1103/PhysRevLett.84.362
- C. Zhou, J. Kong, E. Yenilmez, H. Dai. Science, 290, 1552 (2000). https://doi.org/10.1126/SCIENCE.290.5496.1552
- E. Pop, D. Mann, J. Cao, Q. Wang, K. Goodson, H. Dai. Phys. Rev. Lett., 95, 155505 (2005). https://doi.org/10.1103/PhysRevLett.95.155505
- G. Buchs, P. Ruffieux, P. Groning, O. Groning. Appl. Phys. Lett., 93, 073115 (2008). https://doi.org/10.1063/1.2975177/336360
- S.W. Lee, A. Kornblit, D. Lopez, S.V. Rotkin, A.A. Sirenko, H. Grebel. Nano Lett., 9, 1369 (2009). https://doi.org/10.1021/nl803036a
- M. Ahlskog, O. Herranen, A. Johansson, J. Leppaniemi, D. Mtsuko. Phys. Rev. B, 79, 155408 (2009). https://doi.org/10.1103/PhysRevB.79.155408
- M. Rinkio, A. Johansson, V. Kotimaki, P. Torma. ACS Nano, 4, 3356 (2010). https://doi.org/10.1021/nn100208v
- K.A. Shah, M.S. Parvaiz. Superlatt. Microstruct., 100, 375 (2016). https://doi.org/10.1016/J.SPMI.2016.09.037
- M. Ahlskog, O. Herranen, J. Leppaniemi, D. Mtsuko. Eur. Phys. J. B, 95, 130 (2022). https://doi.org/10.1140/EPJB/S10051-022-00392-Z
- S. Jung, R. Hauert, M. Haluska, C. Roman, C. Hierold. Sensors Actuators B: Chem., 331, 129406 (2021). https://doi.org/10.1016/J.SNB.2020.129406
- T.D. Yuzvinsky, W. Mickelson, S. Aloni, G.E. Begtrup, A. Kis, A. Zettl. Nano Lett., 6, 2718 (2006). https://doi.org/10.1021/nl061671j
- S. Choudhary, G. Saini, S. Qureshi. Mod. Phys. Lett. B, 28, 1450007 (2014). https://doi.org/10.1142/S0217984914500079
- S.A. Evlashin, M.A. Tarkhov, D.A. Chernodubov, A.V. Inyushkin, A.A. Pilevsky, P.V. Dyakonov, A.A. Pavlov, N.V. Suetin, I.S. Akhatov, V. Perebeinos. Phys. Rev. Appl., 15, 054057 (2021). https://doi.org/10.1103/PhysRevApplied.15.054057
- R. Zhang, Y. Zhang, F. Wei. Chem. Soc. Rev., 46, 3661 (2017). https://doi.org/10.1039/C7CS00104E
- M. He, S. Zhang, J. Zhang. Chem. Rev., 120, 12592 (2020). https://doi.org/10.1021/ACS.CHEMREV.0C00395
- L. Liu, J. Han, L. Xu, J. Zhou, C. Zhao, S. Ding, H. Shi, M. Xiao, L. Ding, Z. Ma, C. Jin, Z. Zhang, L.M. Peng. Science, 368, 850 (2020). https://doi.org/10.1126/science.aba5980
- S. Shekhar, P. Stokes, S.I. Khondaker. ACS Nano, 5, 1739 (2011). https://doi.org/10.1021/nn102305z
- J. Kimbrough, L. Williams, Q. Yuan, Z. Xiao. Micromachines, 12 (1), 12 (2021). https://doi.org/10.3390/MI12010012
- M.J. Biercuk, S. Ilani, C.M. Marcus, P.L. McEuen. Electrical transport in single-wall carbon nanotubes (In: Topics Appl. Phys., Springer, Berlin, Heidelberg, 2008) p. 455. https://doi.org/10.1007/978-3-540-72865-8_15
- V. Perebeinos, J. Tersoff, P. Avouris. Nano Lett., 6, 205 (2006). https://doi.org/10.1021/nl052044h
- T. Durkop, S.A. Getty, E. Cobas, M.S. Fuhrer. Nano Lett., 4, 35 (2004). https://doi.org/10.1021/NL034841Q
- M. Shur. Physics of Semiconductor Devices (Prentice Hall, 1990)
- C. Schonenberger, A. Bachtold, C. Strunk, J.P. Salvetat, L. Forro. Appl. Phys. A: Mater. Sci. Process., 69, 283 (1999). https://doi.org/10.1007/s003390051003
- B. Stojetz, C. Hagen, C. Hendlmeier, E. Ljubovic, L. Forro, C. Strunk. New J. Phys., 6, 27 (2004). https://doi.org/10.1088/1367-2630/6/1/027
- J.F. Dayen, T.L. Wade, M. Konczykowski, J.E. Wegrowe, X. Hoffer. Phys. Rev. B, 72, 073402 (2005). https://doi.org/10.1103/PHYSREVB.72.073402
- R. Jago, R. Perea-Causin, S. Brem, E. Malic. Nanoscale, 11, 10017 (2019). https://doi.org/10.1039/c9nr01714c
- E. Decrossas, M.A. El Sabbagh, V.F. Hanna, S.M. El-Ghazaly. IEEE Trans. Electromagn. Compat., 54, 81 (2012). https://doi.org/10.1109/TEMC.2011.2174788
- J. Wu, L. Kong. Appl. Phys. Lett., 84, 4956 (2004). https://doi.org/10.1063/1.1762693
- J.M. Marulanda, A. Srivastava. Phys. Status Solidi B, 245 (11), 2558 (2008). https://doi.org/10.1002/PSSB.200844259
- R.S. Lee, H.J. Kim, J.E. Fischer, A. Thess, R.E. Smalley. Nature, 388, 255 (1997). https://doi.org/10.1038/40822
- M. Radosavljevic, J. Appenzeller, P. Avouris, J. Knoch. Appl. Phys. Lett., 84, 3693 (2004). https://doi.org/10.1063/1.1737062
- L. Duclaux. Carbon (N.Y.), 40, 1751 (2002). https://doi.org/10.1016/S0008-6223(02)00043-X
- M. Shur. GaAs devices and circuits (Plenum Press, N.Y., 1987)
- J. Li, Q. Ye, A. Cassell, H.T. Ng, R. Stevens, J. Han, M. Meyyappan. Appl. Phys. Lett., 82, 2491 (2003). https://doi.org/10.1063/1.1566791
- B. Kim, M.L. Geier, M.C. Hersam, A. Dodabalapur. Sci. Rep., 7, 39627 (2017). https://doi.org/10.1038/srep39627
- Q. Bao, K.P. Loh. ACS Nano, 6, 3677 (2012). https://doi.org/10.1021/NN300989G
- Y. Zhou, A. Gaur, S.H. Hur, C. Kocabas, M.A. Meitl, M. Shim, J.A. Rogers. Nano Lett., 4, 2031 (2004). https://doi.org/10.1021/nl048905o
- A.I. Vorobyova. Uspekhi fiz. nauk, 179, 243 (2009). (in Russian)
- R. Rosen, W. Simendinger, C. Debbault, H. Shimoda, L. Fleming, B. Stoner, O. Zhou. Appl. Phys. Lett., 76, 1668 (2000). https://doi.org/10.1063/1.126130
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.