Model of breakdown of MOS-structures by the mechanism of anode hydrogen release
Aleksandrov O. V. 1
1St. Petersburg State Electrotechnical University “LETI", St. Petersburg, Russia
Email: Aleksandr_ov@mail.ru
A quantitative model of the breakdown of MOS-structures with relatively thick (10-100 nm) gate dielectric by the mechanism of anode hydrogen release from interphase boundary Si-SiO2 is proposed. The breakdown delay time is determined by dispersion transport and accumulation of hydrogen ions in the gate dielectric. It is shown that at a high concentration of hydrogen in MOS structures and electric field strength of less than ~10 MV/cm, the model satisfactorily describes breakdown delay times significantly shorter than those expected from the 1/E model. At higher field strengths, the breakdown is described by the anode hole injection model. Keywords: MOS-structure, breakdown, anode hydrogen release, anode hole injection.
- High-k Gate Dielectric Materials Applications with Advanced Metal Oxide Semiconductor Field Effect Transistors (MOSFETs), ed. by N.P. Maity, R. Maity, S. Baishya (Apple Academic Press, 2022)
- G.Ya. Krasnikov. Konstruktivno-tekhnologicheskiye osobennosti submikronnykh MOP-tranzistorov (M., Tekhnosfera, 2004) part 2, chapter 7. (in Russian)
- A.W. Strong, E.Y. Wu, R.-P. Vollertsen, J. Sune, G. La Rosa, S.E. Rauch, T.D. Sullivan. Reliability wearout mechanism in advanced CMOS technologies (IEEE Press, Wiley, 2009) chap. 3
- A. Kumar. Int. J. Com. Dig. Sys., 12 (1), 21 (2022)
- A.S. Sivchenko, E.V. Kuznetsov, A.N. Saurov. Izv. vuzov. Elektronika, 24 (5), 469 (2019). (in Russian)
- E.S. Gornev. Elektron. tekhn., ser. 3. Mikroelektronika, N 3 (179), 52 (2020). (in Russian)
- J.W. McPherson. Microelectron. Reliab., 52 (9-10), 1753 (2012)
- E.Y. Wu, J. Sune. J. Appl. Phys., 114, 014103 (2013)
- G.Ya. Krasnikov, E.S. Gornev, P.V. Ignatov, D.S. Mizginov. Elektron. tekhn., ser. 3. Mikroelektronika, N 2 (170), 5 (2018). (in Russian)
- D.J. DiMaria, J.W. Stasiak. J. Appl. Phys., 65 (6), 2342 (1989)
- R. Gale, F.J. Feigl, C.W. Magee, D.R. Young. J. Appl. Phys., 54 (12), 6938 (1983)
- Y. Nissan-Cohen, T. Gorczyca. IEEE Electron Dev. Lett., 9 (6), 287 (1988)
- C. Gelatos, H.-H. Tseng, S. Filipiak, D. Sieloff, J. Grant, P. Tobin, R. Cotton. Int. Symp. VLSI Technol. (1997) p. 188
- L. Zhong, F. Shimura. J. Appl. Phys., 79 (5), 2509 (1996)
- O.V. Aleksandrov. FTP, 51 (8), 1105 (2017). (in Russian)
- B. Hartenstein, A. Jakobs, K.W. Kehr. Phys. Rev. B, 54 (12), 8574 (1996)
- H.E. Boesch, F.B. McLean, J.M. Benedetto, J.M. McGarrity. IEEE Trans. Nucl. Sci., 33 (6), 1191 (1986)
- O.V. Aleksandrov. FTP, 54 (10), 1029 (2020). (in Russian)
- T.V. Shmidt, V.A. Gurtov, V.A. Laleko. Russ. Microelectron., 17 (3), 244 (1988). (in Russian)
- O.V. Alexandrov, N.S. Tyapkin, S.A. Mokrushina, V.N. Fomin. FTP, 56 (2), 250 (2022). (in Russian)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.