Model of breakdown of MOS-structures by the mechanism of anode hydrogen release
Aleksandrov O. V. 1
1St. Petersburg State Electrotechnical University “LETI", St. Petersburg, Russia
Email: Aleksandr_ov@mail.ru

PDF
A quantitative model of the breakdown of MOS-structures with relatively thick (10-100 nm) gate dielectric by the mechanism of anode hydrogen release from interphase boundary Si-SiO2 is proposed. The breakdown delay time is determined by dispersion transport and accumulation of hydrogen ions in the gate dielectric. It is shown that at a high concentration of hydrogen in MOS structures and electric field strength of less than ~10 MV/cm, the model satisfactorily describes breakdown delay times significantly shorter than those expected from the 1/E model. At higher field strengths, the breakdown is described by the anode hole injection model. Keywords: MOS-structure, breakdown, anode hydrogen release, anode hole injection.
  1. High-k Gate Dielectric Materials Applications with Advanced Metal Oxide Semiconductor Field Effect Transistors (MOSFETs), ed. by N.P. Maity, R. Maity, S. Baishya (Apple Academic Press, 2022)
  2. G.Ya. Krasnikov. Konstruktivno-tekhnologicheskiye osobennosti submikronnykh MOP-tranzistorov (M., Tekhnosfera, 2004) part 2, chapter 7. (in Russian)
  3. A.W. Strong, E.Y. Wu, R.-P. Vollertsen, J. Sune, G. La Rosa, S.E. Rauch, T.D. Sullivan. Reliability wearout mechanism in advanced CMOS technologies (IEEE Press, Wiley, 2009) chap. 3
  4. A. Kumar. Int. J. Com. Dig. Sys., 12 (1), 21 (2022)
  5. A.S. Sivchenko, E.V. Kuznetsov, A.N. Saurov. Izv. vuzov. Elektronika, 24 (5), 469 (2019). (in Russian)
  6. E.S. Gornev. Elektron. tekhn., ser. 3. Mikroelektronika, N 3 (179), 52 (2020). (in Russian)
  7. J.W. McPherson. Microelectron. Reliab., 52 (9-10), 1753 (2012)
  8. E.Y. Wu, J. Sune. J. Appl. Phys., 114, 014103 (2013)
  9. G.Ya. Krasnikov, E.S. Gornev, P.V. Ignatov, D.S. Mizginov. Elektron. tekhn., ser. 3. Mikroelektronika, N 2 (170), 5 (2018). (in Russian)
  10. D.J. DiMaria, J.W. Stasiak. J. Appl. Phys., 65 (6), 2342 (1989)
  11. R. Gale, F.J. Feigl, C.W. Magee, D.R. Young. J. Appl. Phys., 54 (12), 6938 (1983)
  12. Y. Nissan-Cohen, T. Gorczyca. IEEE Electron Dev. Lett., 9 (6), 287 (1988)
  13. C. Gelatos, H.-H. Tseng, S. Filipiak, D. Sieloff, J. Grant, P. Tobin, R. Cotton. Int. Symp. VLSI Technol. (1997) p. 188
  14. L. Zhong, F. Shimura. J. Appl. Phys., 79 (5), 2509 (1996)
  15. O.V. Aleksandrov. FTP, 51 (8), 1105 (2017). (in Russian)
  16. B. Hartenstein, A. Jakobs, K.W. Kehr. Phys. Rev. B, 54 (12), 8574 (1996)
  17. H.E. Boesch, F.B. McLean, J.M. Benedetto, J.M. McGarrity. IEEE Trans. Nucl. Sci., 33 (6), 1191 (1986)
  18. O.V. Aleksandrov. FTP, 54 (10), 1029 (2020). (in Russian)
  19. T.V. Shmidt, V.A. Gurtov, V.A. Laleko. Russ. Microelectron., 17 (3), 244 (1988). (in Russian)
  20. O.V. Alexandrov, N.S. Tyapkin, S.A. Mokrushina, V.N. Fomin. FTP, 56 (2), 250 (2022). (in Russian)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru