Морфология слоев нанопористого германия, сформированных при имплантации ионами Cu+, Ag+ и Bi+ различных энергий
Российский научный фонд, 19-79-10216
Гаврилова Т.П.1, Валеев В.Ф.1, Нуждин В.И.1, Рогов А.М.1, Коновалов Д.А.1, Хантимеров С.М.1, Степанов А.Л.1
1Казанский физико-технический институт им. Е.К. Завойского, ФИЦ Казанский научный центр РАН, Казань, Россия
Email: tatyana.gavrilova@gmail.com
Поступила в редакцию: 4 ноября 2023 г.
В окончательной редакции: 28 декабря 2023 г.
Принята к печати: 17 января 2024 г.
Выставление онлайн: 21 марта 2024 г.
Исследовано формирование тонких поверхностных аморфных слоев нанопористого Ge различной морфологи при высокодозовой ионной имплантации гладких монокристаллических подложек c-Ge в диапазоне энергий облучения 10-40 keV. Имплантация проведена ионами металлов различных масс при плотности тока в ионном пучке 5 μA/cm2 и дозах 1.0· 1017 (63Cu+) и 5.0· 1016 (108Ag+, 209Bi+) ion/cm2. Анализ морфологии нанопористых структур выполнен методом высокоразрешающей сканирующей электронной микроскопии. Установлено, что при малых энергиях облучения 10-15 keV для относительно легких ионов 63Cu+ и 108Ag+ на поверхности c-Ge формируются разориентированные тонкие игольчатые нанообразования, а в случае 209Bi+ образуется пористый слой, состоящий из плотно упакованных переплетающихся нанонитей. При высоких энергиях 30-40 keV морфология нанопористого Ge с увеличением массы внедряемого иона меняет свою форму последовательно от трехмерной сетчатой структуры до губчатой, состоящей из отдельных пространственно-разнесенных утонченных переплетающихся нанонитей. Ключевые слова: нанопористый германий, ионная имплантация, морфология поверхности, профили распределения ионов.
- D.P. Datta, T. Som. Solar Еnergy, 223, 367 (2021). DOI: 10.1016/j.solener.2021.05.016
- А.Л. Степанов, В.И. Нуждин, В.Ф. Валеев, Д.А. Коновалов, А.М. Рогов. Письма в ЖТФ, 49 (8), 10 (2023). DOI: 10.21883/PJTF.2023.08.55129.19466 [A.L. Stepanov, V.I. Nuzhdin, V.F. Valeev, D.A. Konovalov, A.M. Rogov. Tech. Phys. Lett., 49 (4), 51 (2023). DOI: 10.21883/TPL.2023.04.55878.19466]
- D. Caudevilla, S. Algaidy, F. Perez-Zenteno, S. Duarte-Cano, R. Garsia-Hemme, E. San Andres, A. del Prado, R. Barrio, I. Torres, E. Garcia-Hemme, D. Pastor. Semicond. Sci. Technol., 37, 124001 (2022). DOI: 10.1088/1361-6641/ac9a67
- H.H. Gandhi, D. Pastor, T.T. Tran, S. Kalchmair, L.A. Smile, J.P. Mailoa, R. Milazzo, E. Napolitani, M. Loncar, J.S. Williams, M.J. Aziz, E. Mazur. Phys. Rew. Lett., 14, 64051 (2020). DOI: 10.1103/PhysRevApplied.14.064051
- N.G. Rudawski, B.L. Darby, B.R. Yates, K.S. Jones, R.G. Elliman, A.A. Volinsky. Appl. Phys. Lett., 100, 83111 (2012)
- Т.П. Гаврилова, С.М. Хантимеров, В.И. Нуждин, В.Ф. Валеев, А.М. Рогов, А.Л. Степанов. Письма в ЖТФ, 48 (8), 33 (2022). DOI: 10.21883/PJTF.2022.08.52364.19096 [T.P. Gavrilova, S.M. Khantimerov, V.I. Nuzhdin, V.F. Valeev, A.M. Rogov, A.L. Stepanov. Tech. Phys. Lett., 48 (4), 70 (2022). DOI: 10.21883/TPL.2022.04.53488.19096]
- N.G. Rudawski, K.S. Jones. J. Mater. Res., 28 (13), 1633 (2013). DOI: 10.1557/jmr.2013.24
- А.Л. Степанов, В.И. Нуждин, А.М. Рогов, В.В. Воробьев, Формирование слоев пористого кремния и германия с металлическими наночастицами (ФИЦ КазНЦ РАН, Казань, 2019)
- M.C. Ridgway, T. Bierschenk, R. Giilian, B. Afra, M.D. Rodriguez, L.L. Araujo, A.P. Byrne, N. Kirby, P.H. Pakerinen, F. Djurabekova, K. Nordlund, M. Schleberger, O. Osmani, N. Mendeleev, B. Rethfeld, P. Kluth. Phys. Rev. Lett., 110, 245502 (2013)
- S. Hooda, S.A. Khan, B. Satpati, D. Kanjilal, D. Kabiraj. Appl. Phys. Lett., 108, 201603 (2016)
- T. Lohner, A. Nemeth, Z. Zolnai, B. Kalas, A. Romanenko, N.Q. Khanh, E. Szilagyi, E. Kotai, E. Agocs, Z. Toth, J. Budai, P. Petrik, M. Fried, I. Barsony, J. Gyulai. Mater. Sci. Semicond. Proc., 152, 107062 (2022). DOI: 10.1016/j.mssp.2022.107062
- S. Prucnal, J. Zuk, R. Hubner, J. Duan, M. Wang, K. Pyszniak, A. Drozdziel, M. Turek, S. Zhou. Materials, 13, 1408 (2020). DOI: 10.3390/ma13061408u
- S.-Y. Wen, L. He, Y.-H. Zhu, J.-W. Luo. J. Appl. Phys., 133, 45703 (2023). DOI: 10.1063/5.0134924
- D. Chowdhury, S. Mondal, M. Secchi, M.C. Giordano, L. Vanzetti, M. Barozzi, M. Bersani, D. Giubertoni, F.B. de Mongeot. Nanotechnol., 33, 305304 (2022). DOI: 10.1088/1361-6528/ac64ae
- X. Ou, A. Keller, M. Helm, J. Fassbendr, S. Facko. Phys. Rev. Lett., 111, 16101 (2013). DOI: 10.1103/PhysRevLett.111.016101
- Y. Kudriavtsev, A. Hernandez-Zanabria, C. Salinas, R. Asomoza. Vacuum, 177, 109393 (2020). DOI: 10.1016/j.vacuum.2020.109393
- Y. Kudriavtsev, R. Asomoza, A. Hernandez, D.Y. Kazantsev, B.Y. Ber, A.N. Gorokhov. J. Vacuum Sci. Technol. A, 38, 53203 (2020). DOI: 10.1116/6.0000262
- M.A. Smirnova, A.S. Ivanov, V.I. Bachurin, A.B. Churilov. J. Phys. Conf. Ser., 2086, 12210 (2021). DOI: 10.1088/1742-6596/2086/1/012210
- L. Vazquez, A. Redondo-Cubero, K. Lorentz, F.J. Palomares, R. Cuerno. J. Phys. Conens. Matter., 34, 333002 (2022). DOI: 10.1088/1361-648X/ac75a1
- J.F. Ziegler, M.D. Ziegler, J.P. Biersack. Nucl. Instr. Meth. Phys. Res. B, 268, 1818 (2010). DOI: 10.1016/j.nimb.2010.02.091
- M. Nastasi, J.W. Mayer, J.K. Hirvonen. Ion-solid Interactions (Cambridge Univ., Press: Cambridge, 1996), 540 p
- А.М. Рогов, В.И. Нуждин, В.Ф. Валеев, И.А. Романов, И.М. Климович, А.Л. Степанов. Российские нанотехнологии, 13 (9-10), 35 (2018). [A.M. Rogov, V.I. Nuzhdin, V.F. Valeev, I.A. Romanov, I.M. Klimovich, A.L. Stepanov. Nanotechnologies in Russia, 13 (9-10), 487 (2019).]
- Г.В. Самсонов, Бондарев В.Н., Германиды (Металлургия, М., 1968), 200 с. [G.V. Samsonov, Y.N. Bondarev, Germanides (Springer, Berlin, 1969), 163 p.]
- C. Furgeaud, L. Simont, A. Michel, G. Abadias. Acta Mater., 159, 286 (2018). DOI: 10.1016/j.actamat.2018.08.019
- E.M. Smith, W.H. Streyer, N. Nader, S. Vangala, G. Grzybowski, R. Soref, D. Wasserman, J.W. Cleary. Opt. Mater. Express, 8 (4), 319998 (2018). DOI: 10.1364/OME.8.000968
- C. Shang, L. Hu, D. Luo, K. Kempa, Y. Zhang, G. Zhou, X. Wang, Z. Chen. Adv. Sci., 7, 2002358 (2020). DOI: 10.1002/advs.202002358
- M.O. Aboelfotoh, M.A. Borek, J. Narayan. J. Appl. Phys., 87 (1), 365 (2000)
- T. Steinbach, J. Wernecke, P. Kluth, M.C. Ridgway, W. Wesch. Phys. Rev. B, 84, 104108 (2011). DOI: 10.1103/PhysRevB.84.104108
- S. Hooda, S.A. Khan, B. Satpati, A. Uedono, S. Sellaiyan, K. Asokan, D. Kanjilal, D. Kabiraj. Microporous Mesoporous Mater., 225, 323 (2016). DOI: 10.1016/j.micromeso.2016.01.006
- S. Hooda, S.A. Khan, B. Satpati, D. Kanjilal, D. Kabiraj. Appl. Phys. Lett., 108, 201603 (2016). DOI: 10.1063/1.4950710
- S. Hooda, S.A. Khan, B. Satpati, D. Stange, D. Buca, M. Bala, C. Pannu, D. Kanjilal, D. Kabiraj. Appl. Phys. A, 122, 227 (2016). DOI: 10.1007/s00339-016-9776-5
- A.L. Stepanov, V.V. Vorobev, M.A. Ermakov, V.F. Valeev, V.I. Nuzhdin. Scientific J. Microelectron., 4 (3), 11 (2014)
- S. Delsante, G. Borzone, R. Novakovic. Thermochimica Acta, 682, 178432 (2019). DOI: 10.1016/j.tca.2019.178432
- D. Manasijevic, L. Balanovic, I. Markovic, M. Gorgievski, U. Stamenkovic, D. Minic, M. Premovic, A. Dordevic, V. Cosovic. J. Thermak. Analysis Calorimetry, 147, 1995 (2022). DOI: 10.1007/s10973-021-10664-y
- B.R. Appleton, O.W. Holland, J. Narayan, O.E. Schow III, J.S. Williams, K.T. Short, L. Lawson. Appl. Phys. Lett., 41 (8), 711 (1982). DOI: 10.1063/1.93643
- O.W. Holland, B.R. Appleton, J. Narayan. J. Appl. Phys., 54 (5), 2295 (1983). DOI: 10.1063/1.332385
- L. Bischoff, W. Pilz, B. Schmidt. Appl. Phys. A, 104, 1153 (2011). DOI: 10.1007/s00339-011-6396-y
- Z. Zhang, M. Song, C. Si, W. Cui, Y. Wang. Science, 3, 100070 (2023). DOI: 10.1016/j.esci.2022.07.004
- A.L. Stepanov, B.F. Farrakhov, Ya.V. Fattakhov, A.M. Rogov, D.A. Konovalov, V.I. Nuzhdin, V.F. Valeev. Vacuum, 186, 110060 (2021). DOI: 10.1016/j.vacuum.2021.110060
- A.L. Stepanov, S.M. Khantimerov, V.I. Nuzhdin, V.F. Valeev, A.M. Rogov. Vacuum, 194, 110552 (2021). DOI: 10.1016/j.vacuum.2021.110552
- A.M. Rogov, V.I. Nuzhdin, V.F. Valeev, A.L. Stepanov. Composit. Comm., 19, 6 (2020). DOI: 10.1016/j.coco.2020.01.002
- P. Bellon, S.J. Chey, J.E. van Nostrand, M. Ghaly, D.G. Cahill, R.S. Averback. Surf. Sci., 339 (1-2), 135 (1995). DOI: 10.1016/0039-6028(95)00656-7
- J.C. Kim, D.G. Cahill, R.S. Averback. Surf. Sci., 574 (2-3), 175 (2005). DOI: 10.1016/j.susc.2004.10.026
- I.H. Wilson. J. Appl. Phys., 53, 1698 (1982). DOI: 10.1063/1.221636
- I.D. Desnica-Frankovic, P. Dubcek, U.V. Desnica, S. Bernstorff, M.C. Ridgway, C.J. Glover. Nucl. Instr. Meth. Phes. Res. B, 249 (1-2), 114 (2006). DOI: 10.1016/j.nimb.2006.03.093
- G. Impellizzeri, L. Romano, L. Bosco, C. Spinella, M.G. Grimaldi. Appl. Phys. Express, 5, 35201 (2012)
- L. Romano, G. Impellizzeri, M.V. Tomasello, F. Giannazzo, C. Spinella, M.G. Grimaldi. J. Appl. Phys., 107, 84314 (2010)
- I.M. Klimovich, A.L. Stepanov. Lett. Mater., 13 (3), 243 (2023). DOI: 10.22226/2410-3535-2023-3-243-248
- A.V. Pavlikov, A.M. Rogov, A.M. Sharafutdinova, A.L. Stepanov. Vacuum, 184, 109881 (2021). DOI: 10.1016/j.vacuum.2020.10988
- M. Ghaly, K. Nordlund, R.S. Averback. Philosoph. Magazin, 79, 795 (1999)
- C. Cawthorne, E.J. Fulton. Nature, 216, 575 (1967).
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.