Numerical modeling of acoustic instability in a nonequilibrium vibrationally excited gas
Khrapov S. S. 1, Ivanchenko G. S. 1, Radchenko V. P. 1, Titov A. V. 1
1Volgograd State University, Volgograd, Russia
Email: khrapov@volsu.ru, genaivanchenko@volsu.ru, viktor.radchenko@volsu.ru

PDF
Based on gas-dynamic methods, numerical modeling of the nonlinear dynamics of sound waves in a vibrationally excited nonequilibrium gas was carried out and the main stages of the evolution of acoustic instability were studied. It is shown that in numerical models the linear regime with an exponential growth law of the amplitude of disturbances is in good agreement with the linear analysis of stability, and at the nonlinear stage of development of acoustic instability, a system of shock waves is formed. The effects of nonlinear saturation of the intensity of shock waves, caused by the stabilization of acoustic instability, are demonstrated. Keywords: nonequilibrium gas, vibrational relaxation, acoustic instability, numerical modeling, CSPH-TVD method.
  1. A.I. Osipov, A.V. Uvarov. UFN, 162 (11), 1 (1992). DOI: 10.3367/UFNr.0162.199211a.0001
  2. V.G. Makaryan, N.E. Molevich. Fiziko-Khimicheskaya kinetika v gazovoy dinamike, 3, id. 84 (2005). (In Russian). http://chemphys.edu.ru/issues/2005-3/articles/84/
  3. V.G. Makaryan, N.E. Molevich. Plasma Sources Sci. Technol., 16 (1), 124 (2007). DOI: 10.1088/0963-0252/16/1/017
  4. D. Zavershinskii, N. Molevich, S. Belov, D. Riashchikov, AIP Conf. Proc., 2304 (1), id. 020028 (2020). DOI: 10.1063/5.0034849
  5. T.G. Elizarova, A.A. Zlotnik, M.A. Istomina. AZh, 95 (1), 11 (2018). (In Russian). DOI: 10.7868/S0004629918010012
  6. M.A. Butenko, I.V. Belikova, N.M. Kuzmin, S.S. Khokhlova, G.S. Ivanchenko, A.V. Ten, I.V. Kudina. Matemat. Fizika i komp. modelirovanie, 25 (3), 73 (2022) (in Russian). DOI: 10.15688/mpcm.jvolsu.2022.3.5
  7. G.V. Shoev, E.A. Bondar, G.P. Oblapenko, E.V. Kustova. Teplofizika i aeromekhanika, 23, (2), 159 (2016) (in Russian)
  8. A.V. Khoperskov, S.S. Khrapov, E.A. Nedugova. Astronomy Lett., 29 (4), 246 (2003). doi.org/10.1134/1.1564856
  9. L. Landau, E. Teller. Phys. Z. Sowjetunion, 10, 34-43 (1936)
  10. A.A. Kosareva, E.A. Nagnibeda. Vestnik of SPbGU, Ser. 1, 3 (61), 468--2016 (2014). (in Russian)
  11. R.C. Millikan, D.R. White. J. Chem. Phys., 39, 3209 (1963)
  12. E.V. Kustova, G.P. Oblapenko, I.Z. Sharafutdinov. Fiziko-Khimicheskaya kinetika v gazovoy dinamike, 16, id. 536 (2015). (In Russian).http://chemphys.edu.ru/issues/2015-16-2/articles/536/
  13. B.F. Gordiets, A.I. Osipov, E.V. Stupochenko, L.A. Shelepin. UFN, 108 (4), 655 (1972)
  14. C. Park. Nonequilibrium Hypersonic Aerothermodynamics. (J. Wiley and Sons, NY., Chichester, Brisbane, Toronto, Singapore, 1990)
  15. E.A. Kovach, S.A. Losev, A.L. Sergievskaya, N.A. Khrapak. Fiziko-khimicheskaya kinetika v gazovoy dinamike, 10, id. 332 (2010). (in Russian). http://chemphys.edu.ru/issues/2010-10/articles/332/
  16. V.E. Alemasov, A.F. Dregalin, A.P. Tishin, V.A. Khudyakov, V.N. Kostin. Thermodinamicheskie i teplofizicheskie svoistva produktov sgoraniya, (VINITI, AN USSR, M. 1980), v. 10, N 1, 379 p. (in Russian)
  17. S. Khrapov, A. Khoperskov. J. Conference Series, 973, 012007 (2018). DOI: 10.1088/1742-6596/973/1/012007
  18. S. Khrapov, A. Khoperskov, S. Khoperskov. J. Conference Series, 1392, 012041 (2019). DOI: 10.1088/1742-6596/1392/1/012041

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru