Luminescent characteristics of ZrHfYEuO ceramics
Dementeva E. V. 1, Shakirova A. A.1, Dementev P. A. 1, Orekhova K. N. 1, Zamoryanskaya M. V. 1
1Ioffe Institute, St. Petersburg, Russia
Email: ivanova@mail.ioffe.ru, azaliya.s@inbox.ru, demenp@yandex.ru, orekhova.kseniia@gmail.com, zamor.mv@gmail.com

PDF
Luminescent characteristics of Zr0.38Hf0.45Y0.1Eu0.07O1.91 ceramics prepared by co-precipitation from a common solution followed by sintering and additional annealing in an argon atmosphere have been studied. It has been shown that ceramics have a cubic crystal structure. Annealing ceramics in an argon atmosphere leads to an increase in the luminescence intensity of Eu3+. Based on the analysis of luminescence spectra of europium ion, it has been concluded that after annealing the Eu3+ ion occupies a more symmetrical position in the crystal lattice. The appearance of intense broad bands in the emission spectra allows us to conclude that during the annealing process in an argon atmosphere, diffusion of oxygen from the sample occurs, and the process of oxygen diffusion is more active in areas with small grain sizes. Keywords: zirconium oxide, hafnium oxide, ceramics, cathodoluminescence, point defects, Eu3+ luminescence Eu3+.
  1. X. Hong, S. Xu, X. Wang, D. Wang, S. Li, B.A. Goodman, W. Deng. J. Lumin., 231, 117766 (2021). DOI: 10.1016/j.jlumin.2020.117766
  2. X. Wang, X. Tan, S. Xu, F. Liu, B.A. Goodman, W. Deng. J. Lumin., 219, 116896 (2020). DOI: 10.1016/j.jlumin.2019.116896
  3. S. Stepanov, O. Khasanov, E. Dvilis, V. Paygin, D. Valiev, M. Ferrari. Ceram. Int., 47, 6608 (2021). DOI: 10.1016/j.ceramint.2020.10.250
  4. M. Eibl, S. Shaw, D. Prieur, A. Rossberg, M.C. Wilding, C. Hennig, K. Morris, J. Rothe, T. Stumpf, N. Huittinen. J. Mater. Sci., 55, 10095 (2020). DOI: 10.1007/s10853-020-04768-3
  5. L.J. Espinoza-Perez, E. Lopez-Honorato, L.A. Gonzalez. Ceram. Int., 46 (10, Part A), 15621 (2020). DOI: 10.1016/j.ceramint.2020.03.109
  6. K.-J. Hwang, M. Shin, M.-H. Lee, H. Lee, M.Y. Oh, T.H. Shin. Ceram. Int., 45 (7, Part B), 9462 (2019). DOI: 10.1016/j.ceramint.2018.09.026
  7. A. Loganathan, A.S. Gandhi. J. Mater. Sci., 52, 7199-7206 (2017). DOI: 10.1007/s10853-017-0956-2
  8. L. Yang, D. Peng, X. Shan, F. Guo, Y. Liu, X. Zhao, P. Xiao. Sens. Actuators B Chem., 254, 578 (2018). DOI: 10.1016/j.snb.2017.07.092
  9. H.S. Lokesha, M.L. Chithambo. Radiat. Phys. Chem., 172, 108767 (2020). DOI: 10.1016/j.radphyschem.2020.108767
  10. C. Zhao, C. Zhou Zhao, S. Taylor, P.R. Chalker. Materials, 7, 5117 (2014). DOI: 10.3390/ma7075117
  11. V.A. Gritsenko, T.V. Perevalov, D.R. Islamov. Phys. Rep., 613, 1 (2016). DOI: 10.1016/j.physrep.2015.11.002
  12. E.J. Shin, S.W. Shin, S.H. Lee, T.I. Lee, M.J. Kim, H.J. Ahn, J.H. Kim, W.S. Hwang, J. Lee, B.J. Cho. IEEE International Electron Devices Meeting (IEDM), 6.2.1 (2020). DOI: 10.1109/IEDM13553.2020.9371984
  13. C. Jin, C.J. Su, Y.J. Lee, P.J. Sung, T. Hiramoto, M. Kobayashi. IEEE Trans Electron Devices, 68 (3), 1304 (2021). DOI: 10.1109/TED.2020.3048916
  14. T.V. Perevalov, D.V. Gulyaev, V.S. Aliev, K.S. Zhuravlev, V.A. Gritsenko, A.P. Yelisseyev. J. Appl. Phys., 116, 244109 (2014). DOI: 10.1063/1.4905105
  15. D.R. Islamov, V.A. Gritsenko, T.V. Perevalov, V.Sh. Aliev, V.A. Nadolinny, A. Chin. Materialia, 15, 100980 (2021). DOI: 10.1016/j.mtla.2020.100980
  16. E.V. Dementeva, P.A. Dementev, M.A. Yagovkina, M.V. Zamoryanskaya. ACS Appl. Nano Mater., 6 (18), 16212 (2023). DOI: 10.1021/acsanm.3c02178
  17. J. Dexpert-Ghys, M. Faucher, P. Caro. J. Solid State Chem., 54 (2), 179 (1984). DOI: 10.1016/0022-4596(84)90145-2
  18. G.A. Gusev, S.M. Masloboeva, M.A. Yagovkina, M.V. Zamoryanskaya. Opt. Spectrosc., 130 (2), 265 (2022). DOI: 10.61011/EOS.2023.10.57758.5619-23
  19. E.V. Ivanova, V.A. Kravets, K.N. Orekhova, G.A. Gusev, T.B. Popova, M.A. Yagovkina, O.G. Bogdanova, B.E. Burakov, M.V. Zamoryanskaya, J. Alloy. Compd., 808, 151778 (2019). DOI: 10.1016/j.jallcom.2019.151778
  20. V.A. Kravets, K.N. Orekhova, M.A. Yagovkina, E.V. Ivanova, M.V. Zamoryanskaya. Opt. Spectrosc., 125, 188 (2018). DOI: 10.1134/S0030400X18080167
  21. E.V. Dementeva, M.V. Zamoryanskaya, V.A. Gritsenko. Opt. Spectrosc., 130 (12), 1563 (2022). DOI: 10.61011/EOS.2023.10.57758.5619-23
  22. A.A. Shakirova, E.V. Dementieva, T.B. Popova, M.V. Zamoryanskaya. Opt. i spektr., 131 (5), 10 (2023) (in Russian). DOI: 10.61011/EOS.2023.10.57758.5619-23
  23. K. Orekhova, M. Zamoryanskaya. J. Lumin., 251, 119228 (2022). DOI: 10.1016/j.jlumin.2022.119228

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru