The influence of the combined additive KMnO4 and NH4I on the photosensitive properties of PbS films
Maskaeva L. N. 1,2, Beltseva A. V.1, Yeltsov O.S. 1, Baklanova I.V. 3, Mikhailov V.F4, Markov V.F. 1,2
1Ural Federal University after the first President of Russia B.N. Yeltsin, Yekaterinburg, Russia
2Ural Institute of State Fire Service of EMERCOM of Russia, Yekaterinburg, Russia
3Institute of Solid State Chemistry, Russian Academy of Sciences, Ural Branch, Yekaterinburg, Russia
4 Institute of Nanotechnology of Microelectronics, Russian Academy of Sciences, Moscow, Russia
Email: larisamaskaeva@yandex.ru, avbeltseva@mail.ru, o.s.eltsov@urfu.ru, v.f.markov@urfu.ru

PDF
PbS, PbS(KMnO4), PbS(NH4I), PbS(KMnO4,NH4I) films with good adhesion to a glass substrate with a thickness of 250 to 490 nm were obtained by chemical deposition. Their composition, morphology, and photosensitive properties have been studied. Comprehensive studies using Raman, IR, and Auger spectroscopy established the presence on the surface of the films of a number of impurity oxygen-containing phases (PbO, PbCO3, PbSO4) and cyanamide PbCN2. A synergistic effect of increasing the photoresponse of PbS films synthesized in the presence of a combination of KMnO4 and NH4I additives was revealed, which is due to the formation of an optically active phase of diiodine pentoxide I2O5 on the crystallite surface. Elemental analysis during layer-by-layer ion etching suggested the formation and incorporation of PbSO4, PbCO3, and PbCN2 into the PbS(KMnO4, NH4I) film, and PbCN2 into the PbS(KMnO4) film. Keywords: chemical deposition, thin films, lead sulfide, diiodine pentoxide, IR, Raman, and Auger spectroscopy, photosensitive properties, synergistic effect.
  1. C. Nacu, V. Vomir, I. Pop, V. Ionescu, R. Grecu. Mater. Sci. Eng. B, 41 (2), 235 (1996). DOI: 10.1016/s0921-5107(96)01611-x
  2. P.M. Khanzode, D.I. Halge, V.N. Narwade, J.W. Dadge, K.A. Bogle. Optik, 226 (1), 165933 (2020). DOI: 10.1016/j.ijleo.2020.165933
  3. S.M. Lee, W. Jang, B.C. Mohanty, J. Yoo, J.W. Jang, D.B. Kim, Y. Yi, A. Soon, Y.S. Cho. Chem. Mater., 30 (21), 7776 (2018). DOI: 10.1021/acs.chemmater.8b03177
  4. T. Li, X. Tang, M. Chen. Coatings, 12, 609 (2022). DOI: 10.3390/coatings12050609
  5. D.G. Moon, S. Rehan, D.H. Yeon, S.M. Lee, S.J. Park, S.J. Ahn, Y.S. Cho. Sol. Energy Mater. Sol. Cells., 200, 109963(2019). DOI: 10.1016/j.solmat.2019.109963
  6. D.H. Yeon, B.C. Mohanty, C.Y. Lee, S.M. Lee, Y.S. Cho. ACS Omega, 2 (8), 4894 (2017). DOI: 10.1021/acsomega.7b00999
  7. V.V. Burungale, R.V. Devan, S.A. Pawar, N.S. Harale, V.L. Patil, V.K. Rao, P.S. Patil. Mater. Sci. Pol., 34(1), 204 (2016). DOI: 10.1515/msp-2016-000
  8. I.V. Zarubin, V.F. Markov, L.N. Maskaeva, N.V. Zarubina, M.V. Kuznetsov. J. Anal. Chem., 72 (3), 327 (2017). DOI: 10.1134/S1061934817030145
  9. T.V. Beatriceveena, E. Prabhu, A. Sree Rama Murthy, V. Jayaraman, K.I. Gnanasekar. Appl. Surf. Sci., 456, 430 (2018). DOI: 10.1016/j.apsusc.2018.06.145
  10. V.M. Goossens, N.V. Sukharevska, D.N. Dirin, M.V. Kovalenko, M.A. Loi. Cell Reports Phys. Sci., 2 (12), 100655 (2021). DOI: 10.1016/j.xcrp.2021.100655
  11. B.Yasabu, F. Gashaw. Inter. J. Agric. Natur. Sci., 14(1), 16 (2021)
  12. U. Chalapathi, S.-H. Park, W.J. Choi. Mater. Sci. Semicond. Process., 134, 106022 (2021). DOI: 10.1016/j.mssp.2021.106022
  13. U. Chalapathi, S.-H. Park, W.J. Choi. Mater. Sci. Semicond. Process., 136, 106147 (2021). DOI: 10.1016/j.mssp.2021.106147
  14. B.G. Zaragoza-Palaciosa, A.R. Torres-Duarteb, S.J. Castillo. J. Mater. Sci. - Mater. Electron., 32 (9), (2021). DOI: 10.1007/s10854-021-06702-y
  15. A. Elmadani, R. Essajaia, A. Qachaou, A. Raidou, M. Fahoume, M. Lharch. Adv. Mater. Proces. Techn., 8 (3), 3413 (2022). DOI: 10.1080/2374068X.2021.1970986
  16. A.S. Barona, M.M. Aboodb, K.A. Mohammed. Chalcogenide Lett., 18 (12), 759 (2021). DOI: 10.1088/0034-4885/23/1/301
  17. D. Vankhade, T. K. Chaudhuri. J. Appl. Phys., 127(17), 175107 (2020). DOI: 10.1063/1.5138908
  18. G.P. Kothiyal, B. Gosh, R.Y. Deshpande. J. Phys. D, 13(5), 869 (1980). DOI: 10.1088/0022-3727/13/5/022
  19. M.S. Ghamsari, M.K. Araghi, S.J. Farahani. Mater. Sci. Eng. B, 133 (1-3), 113 (2006). DOI: 10.1016/j.mseb.2006.06.021
  20. Z.A. Motlagh, M.E. Azim Araghi. Mater. Sci. Semicond. Process., 40, 701 (2015). DOI: 10.1016/j.mssp.2015.07.039
  21. S.Espevik, W. Chen-ho, R. H. Bube. J. Appl. Phys., 42(9), 3513 (1971). DOI: 10.1063/1.1660763
  22. L.N. Neustroev, V.V. Osipov. FTP, 18 (2), 359 (1984) (in Russian)
  23. M. Kul. Anadolu Univ. J. Sci. Technol. (b ), 7 (1), 46 (2019)
  24. G. M. Wolten. J. Electrochem. Soc., 122 (8), 1149 (1975). DOI: 10.1149/1.2134413
  25. I.S. Torriani, M.Tomyiama, S. Bilac, G.B. Rego, J.I. Cisneros, Z.P. Arguello. Thin Solid Films, 77(4), 347 (1981). DOI: 10.1016/0040-6090(81)90328-X
  26. M. Sasani Ghamsari, M. Khosravi Araghi. Iran J. Sci. Technol. Trans. A, 29 (1), 151 (2005). DOI: 10.22099/ijsts.2005.2793
  27. I. Pop, V. Ionescu, C. Nascu, V. Vomir, R. Grecu, E. Indrera. Thin Solid Films, 283 (1-2), 119 (1996). DOI: 10.1016/0040-6090(95)08242-5
  28. L.N. Maskaeva, V. F. Markov, E.V. Mostovshchikova, V.I. Voronin, A.V. Pozdin, S. Santra. J. Alloys Compd., 766, 402 (2018). DOI: 10.1016/j.jallcom.2018.06.263
  29. L.N. Maskaeva, E.V. Mostovshchikova, V.I. Voronin, E.E. Lekomtseva, P.S. Bogatova, V.F. Markov. Semiconductors., 54 (10), 12 (2020). DOI: 10.1134/S1063782620100231230-1240
  30. V.G. Butkevitch, E.R. Globus, I.N. Zalevskai. J. Appl. Phys. 2, (1999)
  31. A.N. Aleshin, A.V. Burlak, A.V. Ignatov, V.A. Pasternak, A.V. Tyurin. Mater. Transl. Neorg. Mater., 31, 394 (1995)
  32. E.M. Larramendi, O. Calzadilla, A. Gonzalez-Arias, E. Hernandez, J. Ruiz-Garcia. Thin Solid Films, 389 (1-2), 301 (2001). DOI: 10.1016/s0040-6090(01)00815-x
  33. V.F. Markov, L.N. Maskaeva, E.V. Mostovshchikova, V.I. Voronin, A.V. Pozdin, A.V. Beltseva, I.O. Selyanin, I.V. Baklanova. PCCP, 24, 16085 (2022). DOI: 10.1039/D2CP01815B
  34. R.L. Petritz. Phys. Rev., 104, 1508 (1956)
  35. G.H. Blount, R.H. Bube, A.L. Robinson. J. Appl. Phys., 41(5), 2190 (1970). DOI: 10.1063/1.1659188
  36. E. Indrea, A. Barbu. In: 2nd ht. Conj: on Photoexcited Processes and Applications (ICPEPA-2, 1995), p. 37. DOI: 10.1016/S0169-4332(97)80012-8
  37. R. Candee, D. Dadarlat, P. Fitori, R. Turku, E. Indream, A. Darabont, L. Biro, I. Bratu, N. Aldea. Stud. Cercet. Fiz., 38, 410 (1986)
  38. H.N. Acharya, H.N. Bose. Indian J. Phys., 54A, 6 (1979)
  39. G.V. Samsonov, S.V. Drozdova. Sulfidy (Metallurgiya, M., 1972) (in Russian)
  40. R.H. Bube. Photoconductivity in solids (Wiley, NY., 1960)
  41. A.V. Burlak, V.V. Zotov, A.V. Ignatov. Poverkhnost. Fisika, khimiya, mekhanika 2, 121 (1992). (in Russian)
  42. H.S.H. Mohamed, M. Abdel-Hafiez, B.N. Miroshnikov, A.D. Barinov, I.N. Miroshnikova. Mater. Sci. Semicond. Process., 27, 725 (2014). DOI: 10.1016/j.mssp.2014.08.010
  43. L.N. Neustroev, V.V. Osipov. FTP, 21 (12), 2159 (1987) (in Russian)
  44. T.B. Fedorova, A.V. Vishnyakov, P.V. Kovtunenko. Issledovaniya v oblasti khimii i khimicheskoi tekhnologii materialov dlya elektronnoi tekhniki, 133, 73 (1978) (in Russian)
  45. D. Vankhade, T.K. Chaudhur. Opt. Mater., 98, 109491 (2019). DOI: 10.1016/j.optmat.2019.109491
  46. J. M. C. da Silva Filho, F.C. Marque. Mater. Sci. Semicond. Process., 91, 188 (2019). DOI: 10.1016/j.mssp.2018.11.029
  47. M. Hangyo, S. Nakashima, Y. Hamada, T. Nishio, Y. Ohno. Phys. Rev. B, 48(15), 11291 (1993). DOI: 10.1103/physrevb.48.11291
  48. R.G. Perez, G.H. Tellez, U.P. Rosas, A.M. Torres, J.H. Tecorralco, L.C. Lima, O.P. Moreno. J. Mater. Sci. Eng. A, 3, 1 (2013)
  49. R. Sherwin, R.J.H. Clark, R. Lauck, M. Cardona. Sol. St. Commun., 134(8), 565 (2005). DOI: 10.1016/j.ssc.2005.02.026
  50. T. Tohidi, K. Jamshidi-Ghaleh, A. Namdar, Abdi-Ghaleh. Mater. Sci. Semicond. Process., 25, 197 (2014). DOI: 10.1016/j.mssp.2013.11.028
  51. T.D. Krauss, F.W. Wise, D.B. Tanner. Phys. Rev. Lett., 76, 1376 (1996)
  52. S.V. Ovsyannikov, V.V. Shchennikov, A. Cantarero, A. Cros, A.N. Titov. Mater. Sci. Eng. A, 462, 422 (2007). DOI: 10.1016/j.msea.2006.05.175
  53. M. Cortez-Valadez, A. Vargas-Ortiz, L. Rojas-Blanco, H. Arizpe-Chavez, M. Flores-Acosta, R. Ramirez-Bon. Phys. E, 53, 146 (2013). DOI: 10.1016/j.physe.2013.05.006
  54. Y. Batonneau, C. Bremard, J. Laureyns, J. C. Merli. J. Raman Spectrosc., 31 (12), 1113 (2000). DOI: 10.1002/1097-4555(200012)31:12<1113::aid- jrs653>3.0.co;2-e
  55. K. Nakamoto. IK spectry i spektry KR neorganicheskikh i koordinatsionnykh soedinenii (Mir, M., 1991) (in Russian)
  56. R.A. Nyquist, R.C. Kagel. Infrared Spectra of Inorganic Compounds (3800-45 cm-1) (Academic Press, NY., 1971)
  57. G.L.J. Trettenhahn, G.E. Nauer, A. Neckel. Vibr. Spectrosc., 5 (1), 85 (1993). DOI: 10.1016/0924-2031(93)87058-2
  58. M.H. Brooker. Can. J. Chem., 61(3), 494 (1983). DOI: 10.1139/v83-087
  59. L. Little. Infrakrasnye spektry adsorbirovannykh molekul (Mir, Moscow, 1969) (in Russian)
  60. Ya.M. Grigoriev, D.V. Pozdnyakov, V.N. Filimonov. Russian Journal of Physical Chemistry, 46 (2), 316 (1972)
  61. L. Bellami. Infrakrasnye spektry slozhnykh molekul (IL, M., 1963) (in Russian)
  62. G.-U. Gremlih. Yazyk spektrov. Vvedenie v interpretatsiyu spektrov organicheskikh soedinenii (Optic, Bruker, 2002) (in Russian)
  63. O.H. Ellestad. Acta Chem. Scand. B, 35 (3), 155 (1981). DOI: 10.3891/acta.chem.scand.35a-0155

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru