Maskaeva L. N.
1,2, Beltseva A. V.
1, Yeltsov O.S.
1, Baklanova I.V.
3, Mikhailov V.F
4, Markov V.F.
1,21Ural Federal University after the first President of Russia B.N. Yeltsin, Yekaterinburg, Russia
2Ural Institute of State Fire Service of EMERCOM of Russia, Yekaterinburg, Russia
3Institute of Solid State Chemistry, Russian Academy of Sciences, Ural Branch, Yekaterinburg, Russia
4 Institute of Nanotechnology of Microelectronics, Russian Academy of Sciences, Moscow, Russia
Email: larisamaskaeva@yandex.ru, avbeltseva@mail.ru, o.s.eltsov@urfu.ru, v.f.markov@urfu.ru
PbS, PbS(KMnO4), PbS(NH4I), PbS(KMnO4,NH4I) films with good adhesion to a glass substrate with a thickness of 250 to 490 nm were obtained by chemical deposition. Their composition, morphology, and photosensitive properties have been studied. Comprehensive studies using Raman, IR, and Auger spectroscopy established the presence on the surface of the films of a number of impurity oxygen-containing phases (PbO, PbCO3, PbSO4) and cyanamide PbCN2. A synergistic effect of increasing the photoresponse of PbS films synthesized in the presence of a combination of KMnO4 and NH4I additives was revealed, which is due to the formation of an optically active phase of diiodine pentoxide I2O5 on the crystallite surface. Elemental analysis during layer-by-layer ion etching suggested the formation and incorporation of PbSO4, PbCO3, and PbCN2 into the PbS(KMnO4, NH4I) film, and PbCN2 into the PbS(KMnO4) film. Keywords: chemical deposition, thin films, lead sulfide, diiodine pentoxide, IR, Raman, and Auger spectroscopy, photosensitive properties, synergistic effect.
- C. Nacu, V. Vomir, I. Pop, V. Ionescu, R. Grecu. Mater. Sci. Eng. B, 41 (2), 235 (1996). DOI: 10.1016/s0921-5107(96)01611-x
- P.M. Khanzode, D.I. Halge, V.N. Narwade, J.W. Dadge, K.A. Bogle. Optik, 226 (1), 165933 (2020). DOI: 10.1016/j.ijleo.2020.165933
- S.M. Lee, W. Jang, B.C. Mohanty, J. Yoo, J.W. Jang, D.B. Kim, Y. Yi, A. Soon, Y.S. Cho. Chem. Mater., 30 (21), 7776 (2018). DOI: 10.1021/acs.chemmater.8b03177
- T. Li, X. Tang, M. Chen. Coatings, 12, 609 (2022). DOI: 10.3390/coatings12050609
- D.G. Moon, S. Rehan, D.H. Yeon, S.M. Lee, S.J. Park, S.J. Ahn, Y.S. Cho. Sol. Energy Mater. Sol. Cells., 200, 109963(2019). DOI: 10.1016/j.solmat.2019.109963
- D.H. Yeon, B.C. Mohanty, C.Y. Lee, S.M. Lee, Y.S. Cho. ACS Omega, 2 (8), 4894 (2017). DOI: 10.1021/acsomega.7b00999
- V.V. Burungale, R.V. Devan, S.A. Pawar, N.S. Harale, V.L. Patil, V.K. Rao, P.S. Patil. Mater. Sci. Pol., 34(1), 204 (2016). DOI: 10.1515/msp-2016-000
- I.V. Zarubin, V.F. Markov, L.N. Maskaeva, N.V. Zarubina, M.V. Kuznetsov. J. Anal. Chem., 72 (3), 327 (2017). DOI: 10.1134/S1061934817030145
- T.V. Beatriceveena, E. Prabhu, A. Sree Rama Murthy, V. Jayaraman, K.I. Gnanasekar. Appl. Surf. Sci., 456, 430 (2018). DOI: 10.1016/j.apsusc.2018.06.145
- V.M. Goossens, N.V. Sukharevska, D.N. Dirin, M.V. Kovalenko, M.A. Loi. Cell Reports Phys. Sci., 2 (12), 100655 (2021). DOI: 10.1016/j.xcrp.2021.100655
- B.Yasabu, F. Gashaw. Inter. J. Agric. Natur. Sci., 14(1), 16 (2021)
- U. Chalapathi, S.-H. Park, W.J. Choi. Mater. Sci. Semicond. Process., 134, 106022 (2021). DOI: 10.1016/j.mssp.2021.106022
- U. Chalapathi, S.-H. Park, W.J. Choi. Mater. Sci. Semicond. Process., 136, 106147 (2021). DOI: 10.1016/j.mssp.2021.106147
- B.G. Zaragoza-Palaciosa, A.R. Torres-Duarteb, S.J. Castillo. J. Mater. Sci. - Mater. Electron., 32 (9), (2021). DOI: 10.1007/s10854-021-06702-y
- A. Elmadani, R. Essajaia, A. Qachaou, A. Raidou, M. Fahoume, M. Lharch. Adv. Mater. Proces. Techn., 8 (3), 3413 (2022). DOI: 10.1080/2374068X.2021.1970986
- A.S. Barona, M.M. Aboodb, K.A. Mohammed. Chalcogenide Lett., 18 (12), 759 (2021). DOI: 10.1088/0034-4885/23/1/301
- D. Vankhade, T. K. Chaudhuri. J. Appl. Phys., 127(17), 175107 (2020). DOI: 10.1063/1.5138908
- G.P. Kothiyal, B. Gosh, R.Y. Deshpande. J. Phys. D, 13(5), 869 (1980). DOI: 10.1088/0022-3727/13/5/022
- M.S. Ghamsari, M.K. Araghi, S.J. Farahani. Mater. Sci. Eng. B, 133 (1-3), 113 (2006). DOI: 10.1016/j.mseb.2006.06.021
- Z.A. Motlagh, M.E. Azim Araghi. Mater. Sci. Semicond. Process., 40, 701 (2015). DOI: 10.1016/j.mssp.2015.07.039
- S.Espevik, W. Chen-ho, R. H. Bube. J. Appl. Phys., 42(9), 3513 (1971). DOI: 10.1063/1.1660763
- L.N. Neustroev, V.V. Osipov. FTP, 18 (2), 359 (1984) (in Russian)
- M. Kul. Anadolu Univ. J. Sci. Technol. (b ), 7 (1), 46 (2019)
- G. M. Wolten. J. Electrochem. Soc., 122 (8), 1149 (1975). DOI: 10.1149/1.2134413
- I.S. Torriani, M.Tomyiama, S. Bilac, G.B. Rego, J.I. Cisneros, Z.P. Arguello. Thin Solid Films, 77(4), 347 (1981). DOI: 10.1016/0040-6090(81)90328-X
- M. Sasani Ghamsari, M. Khosravi Araghi. Iran J. Sci. Technol. Trans. A, 29 (1), 151 (2005). DOI: 10.22099/ijsts.2005.2793
- I. Pop, V. Ionescu, C. Nascu, V. Vomir, R. Grecu, E. Indrera. Thin Solid Films, 283 (1-2), 119 (1996). DOI: 10.1016/0040-6090(95)08242-5
- L.N. Maskaeva, V. F. Markov, E.V. Mostovshchikova, V.I. Voronin, A.V. Pozdin, S. Santra. J. Alloys Compd., 766, 402 (2018). DOI: 10.1016/j.jallcom.2018.06.263
- L.N. Maskaeva, E.V. Mostovshchikova, V.I. Voronin, E.E. Lekomtseva, P.S. Bogatova, V.F. Markov. Semiconductors., 54 (10), 12 (2020). DOI: 10.1134/S1063782620100231230-1240
- V.G. Butkevitch, E.R. Globus, I.N. Zalevskai. J. Appl. Phys. 2, (1999)
- A.N. Aleshin, A.V. Burlak, A.V. Ignatov, V.A. Pasternak, A.V. Tyurin. Mater. Transl. Neorg. Mater., 31, 394 (1995)
- E.M. Larramendi, O. Calzadilla, A. Gonzalez-Arias, E. Hernandez, J. Ruiz-Garcia. Thin Solid Films, 389 (1-2), 301 (2001). DOI: 10.1016/s0040-6090(01)00815-x
- V.F. Markov, L.N. Maskaeva, E.V. Mostovshchikova, V.I. Voronin, A.V. Pozdin, A.V. Beltseva, I.O. Selyanin, I.V. Baklanova. PCCP, 24, 16085 (2022). DOI: 10.1039/D2CP01815B
- R.L. Petritz. Phys. Rev., 104, 1508 (1956)
- G.H. Blount, R.H. Bube, A.L. Robinson. J. Appl. Phys., 41(5), 2190 (1970). DOI: 10.1063/1.1659188
- E. Indrea, A. Barbu. In: 2nd ht. Conj: on Photoexcited Processes and Applications (ICPEPA-2, 1995), p. 37. DOI: 10.1016/S0169-4332(97)80012-8
- R. Candee, D. Dadarlat, P. Fitori, R. Turku, E. Indream, A. Darabont, L. Biro, I. Bratu, N. Aldea. Stud. Cercet. Fiz., 38, 410 (1986)
- H.N. Acharya, H.N. Bose. Indian J. Phys., 54A, 6 (1979)
- G.V. Samsonov, S.V. Drozdova. Sulfidy (Metallurgiya, M., 1972) (in Russian)
- R.H. Bube. Photoconductivity in solids (Wiley, NY., 1960)
- A.V. Burlak, V.V. Zotov, A.V. Ignatov. Poverkhnost. Fisika, khimiya, mekhanika 2, 121 (1992). (in Russian)
- H.S.H. Mohamed, M. Abdel-Hafiez, B.N. Miroshnikov, A.D. Barinov, I.N. Miroshnikova. Mater. Sci. Semicond. Process., 27, 725 (2014). DOI: 10.1016/j.mssp.2014.08.010
- L.N. Neustroev, V.V. Osipov. FTP, 21 (12), 2159 (1987) (in Russian)
- T.B. Fedorova, A.V. Vishnyakov, P.V. Kovtunenko. Issledovaniya v oblasti khimii i khimicheskoi tekhnologii materialov dlya elektronnoi tekhniki, 133, 73 (1978) (in Russian)
- D. Vankhade, T.K. Chaudhur. Opt. Mater., 98, 109491 (2019). DOI: 10.1016/j.optmat.2019.109491
- J. M. C. da Silva Filho, F.C. Marque. Mater. Sci. Semicond. Process., 91, 188 (2019). DOI: 10.1016/j.mssp.2018.11.029
- M. Hangyo, S. Nakashima, Y. Hamada, T. Nishio, Y. Ohno. Phys. Rev. B, 48(15), 11291 (1993). DOI: 10.1103/physrevb.48.11291
- R.G. Perez, G.H. Tellez, U.P. Rosas, A.M. Torres, J.H. Tecorralco, L.C. Lima, O.P. Moreno. J. Mater. Sci. Eng. A, 3, 1 (2013)
- R. Sherwin, R.J.H. Clark, R. Lauck, M. Cardona. Sol. St. Commun., 134(8), 565 (2005). DOI: 10.1016/j.ssc.2005.02.026
- T. Tohidi, K. Jamshidi-Ghaleh, A. Namdar, Abdi-Ghaleh. Mater. Sci. Semicond. Process., 25, 197 (2014). DOI: 10.1016/j.mssp.2013.11.028
- T.D. Krauss, F.W. Wise, D.B. Tanner. Phys. Rev. Lett., 76, 1376 (1996)
- S.V. Ovsyannikov, V.V. Shchennikov, A. Cantarero, A. Cros, A.N. Titov. Mater. Sci. Eng. A, 462, 422 (2007). DOI: 10.1016/j.msea.2006.05.175
- M. Cortez-Valadez, A. Vargas-Ortiz, L. Rojas-Blanco, H. Arizpe-Chavez, M. Flores-Acosta, R. Ramirez-Bon. Phys. E, 53, 146 (2013). DOI: 10.1016/j.physe.2013.05.006
- Y. Batonneau, C. Bremard, J. Laureyns, J. C. Merli. J. Raman Spectrosc., 31 (12), 1113 (2000). DOI: 10.1002/1097-4555(200012)31:12<1113::aid- jrs653>3.0.co;2-e
- K. Nakamoto. IK spectry i spektry KR neorganicheskikh i koordinatsionnykh soedinenii (Mir, M., 1991) (in Russian)
- R.A. Nyquist, R.C. Kagel. Infrared Spectra of Inorganic Compounds (3800-45 cm-1) (Academic Press, NY., 1971)
- G.L.J. Trettenhahn, G.E. Nauer, A. Neckel. Vibr. Spectrosc., 5 (1), 85 (1993). DOI: 10.1016/0924-2031(93)87058-2
- M.H. Brooker. Can. J. Chem., 61(3), 494 (1983). DOI: 10.1139/v83-087
- L. Little. Infrakrasnye spektry adsorbirovannykh molekul (Mir, Moscow, 1969) (in Russian)
- Ya.M. Grigoriev, D.V. Pozdnyakov, V.N. Filimonov. Russian Journal of Physical Chemistry, 46 (2), 316 (1972)
- L. Bellami. Infrakrasnye spektry slozhnykh molekul (IL, M., 1963) (in Russian)
- G.-U. Gremlih. Yazyk spektrov. Vvedenie v interpretatsiyu spektrov organicheskikh soedinenii (Optic, Bruker, 2002) (in Russian)
- O.H. Ellestad. Acta Chem. Scand. B, 35 (3), 155 (1981). DOI: 10.3891/acta.chem.scand.35a-0155
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.