Spectral properties of composite materials based on nanoporous high-silica glasses activated by silver and lanthanum ions
Girsova M. A. 1, Golovina G. F. 1, Anfimova I. N. 1, Kurilenko L. N. 1, Saratovskii A.S. 1
1Grebenschikov Institute of Silicate Chemistry RAS, Saint-Petersburg, Russia
Email: girsovama@yandex.ru

PDF
Spectral properties of composite materials based on matrices of high-silica porous glasses activated by silver ions and lanthanum ions have been investigated. The optical density spectra (270-900 nm) and infrared transmittance spectra (11000-9000 and 9000-4000 cm-1) of composite materials of different compositions subjected to heat treatment according to one of three modes (120, 500 and 800oC) have been considered. The synthesized composite materials were investigated by X-ray powder diffraction method and energy-dispersive X-ray spectroscopy. The analysis of optical spectra permitted to identify the formation of molecular clusters, clusters, dimers and silver nanoparticles, as well as absorption bands related to charge transfer O2+->La3+ (282, 285, 300 nm) and to lanthanum nanoparticles (282, 285 nm) under different conditions of synthesis of composite materials. It was found that the change in the mode of thermal treatment of composites leads to changes in the IR spectra of composites, and the change in their composition leads to the appearance of additional bands associated with the oxygen atom of the OH-group, which can coordinate with several neighboring lanthanum atoms. Keywords: composite materials, high-silica porous glass, silver, lanthanum, near infrared spectroscopy, optical spectroscopy, X-ray powder diffraction method, energy-dispersive X-ray spectroscopy.
  1. G. Abdulkareem-Alsultan, N. Asikin-Mijan, N. Mansir, H.V. Lee, Z. Zainal, A. Islam, Y.H. Taufiq-Yap. J. Analyt. Appl. Pyrolysis, 137, 171 (2019). DOI: 10.1016/j.jaap.2018.11.023
  2. C.R. Michel, A.H. Marti nez-Preciado. Sensors and Actuators B: Chemical, 208, 355 (2015). DOI: 10.1016/j.snb.2014.11.034
  3. J. Fonseca. Frontiers of Materials Science, 16, 220607 (2022). DOI: 10.1007/s11706-022-0607-7
  4. M.A.U. Haq, K. Hussain, Z. Aslam, A.R. Umar, M.R. Shan, Sirajuddin, Mujeeb-ur-Rehman, S.T.H. Sherazi, J. Nisar. Microchemical J., 185, 108289 (2023). DOI: 10.1016/j.microc.2022.108289
  5. H.M.A. Dayem, S.S. Al-Shihry, S.A. Hassan. J. Rare Earths, 37 (5), 500 (2019). DOI: 10.1016/j.jre.2018.09.003
  6. N. Zhao, M.-M. Yao, F. Li, F.-P. Lou. J. Solid-State Chemistry, 184 (10), 2770 (2011). DOI: 10.1016/j.jssc.2011.08.014
  7. Y. Gao, Y. Masuda, K. Koumoto. J. Colloid and Interface Science, 274, 392 (2004). DOI: 10.1016/j.jcis.2004.02.050
  8. G. Gao, L. Yang, B. Dai, F. Xia, Z. Yang, S. Guo, P. Wang, F. Geng, J. Han, J. Zhu. Surface \& Coatings Technology, 365, 164 (2019). DOI: 10.1016/j.surfcoat.2018.07.001
  9. Q. Mu, Y. Wang. J. Alloys and Compounds, 509 (2), 396 (2011). DOI: 10.1016/j.jallcom.2010.09.041
  10. M.A. Girsova, T.V. Antropova, G.F. Golovina, I.N. Anfimova, L.N. Kurilenko, M.Yu. Arsent'ev. IOP Conference Series: Materials Science and Engineering, 704, 012004 (2019). DOI: 10.1088/1757-899X/704/1/012004
  11. M.A. Girsova, L.N. Kurilenko, I.N. Anfimova, M.Yu. Arsent'ev, L.F. Dikaya, E.A. Semenova. Russian Chemical Bulletin, 69 (5), 920 (2020). DOI: 10.1007/s11172-020-2849-9
  12. M.A. Girsova, G.F. Golovina, L.N. Kurilenko, I.N. Anfimova. Glass Physics and Chemistry, 46 (6), 541 (2020). DOI: 10.1134/S1087659620060097
  13. R. Jbeli, A. Boukhachem, I.B. Jemaa, N. Mahdhi, F. Saadallah, H. Elhouichet, S. Alleg, M. Amlouk, H. Ezzaoui a. Spectrochim. Acta Part A: Molecular and Biomolecular Spectroscopy, 184 (5), 71 (2017). DOI: 10.1016/j.saa.2017.04.072
  14. T. Antropova, M. Girsova, I. Anfimova, I. Drozdova, I. Polyakova, N. Vedishcheva. J. Non-Crystalline Solids, 401, 139 (2014). DOI: 10.1016/j.jnoncrysol.2014.01.033
  15. M.A. Girsova, G.F. Golovina, L.N. Kurilenko, I.N. Anfimova. Glass Physics and Chemistry, 47 (Suppl. 1), S36 (2021). DOI: 10.1134/S1087659621070051
  16. R.A. Lidin, L.L. Andreeva, V.A. Molochko. Konstanty neorganichekikh veshchestv: spravochnik (Drofa, Moskva, 2008), 73, 124 (in Russian)
  17. K. Otto, I.O. Acik, M. Krunks, K. Tonsuaadu, A. Mere. J. Thermal Analysis and Calorimetry, 118, 1065 (2014). DOI: 10.1007/s10973-014-3814-3
  18. T.V. Antropova. Fiziko-khimicheskite protsessy cozdaniya poristykh stekol i vysokokremnezemnykh materialov na osnove likviruyushchikh shchelochnoborosilikantnykh sistem. Diss. dokt. khim. nauk. (Institut khimii silikatov im. I.V. Grebenshchikova RAN, Sankt-Peterburg, 2005), 588 pages (in Russian)
  19. T.V. Antropova, I.A. Drozdova. Optica Applicata, 33 (1), 13 (2003)
  20. T.V. Antropova, A.V. Volkova, D.V. Petrov, S.V. Stolyar, L.E. Ermakova, M.P. Sidorova, E.B. Yakovlev, I.A. Drozdova. Optica Applicata, 35 (4), 717 (2005)
  21. T.V. Antropova, I.A. Drozdova, T.N. Vasilevskaya, A.V. Volkova, L.E. Ermakova, M.P. Sidorova. Glass Physics and Chemistry, 33 (2), 109 (2007). DOI: 10.1134/S1087659607020034
  22. T.V. Antropova, S.V. Stolyar, I.N. Anfimova, M.A. Girsova. Glass Physics and Chemistry, 47 (4), 329 (2021). DOI: 10.1134/S1087659621040040
  23. A. Igityan, N. Aghamalyan, S. Petrosyan, I. Gambaryan, G. Badalyan, R. Hovsepyan, Y. Kafadaryan. Appl. Phys. A, 123, 448 (2017). DOI: 10.1007/s00339-017-1057-4
  24. T.A. Hamdalla, T.A. Hanafy. Optik, 127 (2), 878 (2016). DOI: 10.1016/j.ijleo.2015.10.187
  25. V.A. Nikitin, A.N. Sidorov, A.V. Karyakin. Russian Journal of Physical Chemistry, 30 (1), 117 (1956)
  26. O. Humbach, H. Fabian, U. Grzesik, U. Haken, W. Heitmann. J. Non-Crystalline Solids, 203, 19 (1996). DOI: 10.1016/0022-3093(96)00329-8
  27. A. Baraldi, R. Capelletti, N. Chiodini, C. Mora, R. Scotti, E. Uccellini, A. Vedda. Nuclear Instruments and Methods in Physics Research A, 486 (1-2), 408 (2002). DOI: 10.1016/S0168-9002(02)00743-X
  28. M.A. Girsova, G.F. Golovina, I.N. Anfimova, L.N. Kurilenko. Glass Physics and Chemistry, 44 (5), 381 (2018). DOI: 10.1134/S1087659618050061
  29. M.A. Girsova, G.F. Golovina. Glass Physics and Chemistry, 44 (6), 569 (2018). DOI: 10.1134/S1087659618060068
  30. M.A. Girsova, G.F. Golovina, L.N. Kurilenko, I.N. Anfimova. Glass Physics and Chemistry, 46 (6), 531 (2020). DOI: 10.1134/S1087659620060085
  31. M.A. Girsova, T.V. Antropova, G.F. Golovina, I.N. Anfimova, L.N. Kurilenko. Opt. Spectrosc., 131 (1), 80 (2023). DOI: 10.21883/EOS.2023.01.55521.4040-22
  32. J.T. Kloprogge, R.D. Schuiling, Z. Ding, L. Hickey, D. Wharton, R.L. Frost. Vibrational Spectroscopy, 28 (2), 209 (2002). DOI: 10.1016/S0924-2031(01)00139-4
  33. U. Bauer, H. Behrens, M. Fechtelkord, S. Reinsch, J. Deubener. J. Non-Crystalline Solids, 423--424, 58 (2015). DOI: 10.1016/j.jnoncrysol.2015.05.004
  34. R. Balzer, H. Behrens, S. Schuth, T. Waurischk, S. Reinsch, R. Muller, M. Fechtelkord, J. Deubener. J. Non-Crystalline Solids, 519, 119454 (2019). DOI: 10.1016/j.jnoncrysol.2019.05.030
  35. D.A. Klyukin, V.D. Dubrovin, A.S. Pshenova, S.E. Putilin, T.A. Shakhverdov, A.N. Tsypkin, N.V. Nikonorov, A.I. Sidorov. Optical Engineering, 55 (6), 067101 (2016). DOI: 10.1117/1.OE.55.6.067101
  36. M.V. Stolyarchuk, A.I. Sidorov. Opt. Spectrosc., 125 (3), 305 (2018). DOI: 10.1134/s0030400x18090229
  37. B.G. Ershov, E.A. Abkhalimov, N.L. Sukhov. High Energy Chemistry, 39 (2), 55 (2005). DOI: 10.1007/s10733-005-00261
  38. M. Mostafavi, M.O. Delcourt, G. Picq. Radiation Physics and Chemistry, 41 (3), 453 (1993). DOI: 10.1016/0969-806x(93)90004-e
  39. B.M. Sergeev, G.B. Sergeev. Colloid J., 69(5), 639 (2007). DOI: 10.1134/S1061933X07050158
  40. J.-G. Kang, Y.-Il Kim, D.W. Cho, Y. Sohn. Materials Science in Semiconductor Processing, 40, 737 (2015). DOI: 10.1016/j.mssp.2015.07.050
  41. R. Dovnar, A. Vasilkov, I. Dovnar, N. Iaskevich. Cardiology in Belarus, 15 (1), 99 (2023). DOI: 10.34883/PI.2023.15.1.008 (in Russian)
  42. S. Lecoultre, A. Rydlo, J. Buttet, C. Felix, S. Gilb, W. Harbich. The J. Chemical Physics, 134, 184504 (2011). DOI: 10.1063/1.3589357
  43. G.A. Ozin, H. Huber. Inorganic Chemistry, 17 (1), 155 (1978)
  44. S. Fedrigo, W. Harbich, J. Buttet. J. Chem. Phys., 99 (8), 5712 (1993). DOI: 10.1063/1.465920
  45. C. Felix, C. Sieber, W. Harbich, J. Buttet, I. Rabin, W. Schulze, G. Ertl. Chem. Phys. Lett., 313, 105 (1999)
  46. A.V. Vostokov, A.I. Ignat'ev, N.V. Nikonorov, O.A. Podsvirov, A.I. Sidorov, A.V. Nashchekin, R.V. Sokolov, O.A. Usov, V.A. Tsekhomskii. Technical Physics Letters, 35 (9), 812 (2009). DOI: 10.1134/S1063785009090089
  47. C.G. Hu, H. Liu, W.T. Dong, Y.Y. Zhang, G. Bao, C.S. Lao, Z.L. Wang. Advanced Materials, 19 (3), 470 (2007). DOI: 10.1002/adma.200601300
  48. A.J. Haes, C.L. Haynes, A.D. McFarland, G.C. Schatz, R.P. Van Duyne, S. Zou. MRS Bulletin, 30, 368 (2005). DOI: 10.1557/mrs2005.100
  49. M.C. Mathpal, P. Kumar, S. Kumar, A.K. Tripathi, M.K. Singh, J. Prakash, A. Agarwal. RSC Advances, 5 (17), 12555 (2015). DOI: 10.1039/c4ra14061c
  50. A.E. Abbass, H.C. Swart, R.E. Kroon. J. Sol-Gel Science and Technology, 76 (3), 708 (2015). DOI: 10.1007/s10971-015-3825-y
  51. M.V. Shestakov, M. Meledina, S. Turner, V.K. Tikhomirov, N. Verellen, V.D. Rodri guez, J.J. Velazquez, G. Van Tendeloo, V.V. Moshchalkov. J. Appl. Phys., 114 (7), 073102 (2013). DOI: 10.1063/1.4818830
  52. P.A. Obraztsov, A.V. Nashchekin, A.V. Panfilova, P.N. Brunkov, N.V. Nikonorov, A.I. Sidorov. Physics of the Solid State, 55 (6), 1272 (2013). DOI: 10.1134/S1063783413060267
  53. J. Belloni, M. Mostafavi, H. Remita, J.-L. Marignier, M.-O. Delcourt. New J. Chemistry, 22 (11), 1239 (1998). DOI: 10.1039/a801445k
  54. H.A. Oualid, Y. Essamlali, O. Amadine, K. Daanoun, M. Zahouily. Ceramics International, 43 (16), 13786 (2017). DOI: 10.1016/j.ceramint.2017.07.097
  55. H.A. Oualid, O. Amadine, Y. Essamlali, I.M. Kadmiri, H.El. Arroussi, M. Zahouily. Nanoscale Advances, 1 (8), 3151 (2019). DOI: 10.1039/c9na00075e
  56. C. Tonna, C. Wang, D. Mei, S.V. Lamaka, M.L. Zheludkevich, J. Buhagiar. Bioactive Materials, 7, 426 (2022). DOI: 10.1016/j.bioactmat.2021.05.48
  57. H. Xu, J. Xie, W. Jia, G. Wu, Y. Cao. J. Colloid and Interface Science, 516, 511 (2018). DOI: 10.1016/j.jcis.2018.01.071
  58. H. Yang, J. Tian, T. Li, H. Cui. Catalysis Communications, 87, 82 (2016). DOI: 10.1016/j.catcom.2016.09.013
  59. V.A. Kukartsev, A.I. Cherepanov, V.V. Kukartsev, V.S. Tynchenko, V.V. Bukhtoyarov, A.M. Popov, R.B. Sergienko, S.V. Tynchenko. Minerals, 12 (2), 233 (2022). DOI: 10.3390/min12020233
  60. E.B. Shadrin, D.A. Kurdyukov, A.V. Ilinskiy, V.G. Golubev. Semiconductors, 43 (1), 102 (2009). DOI: 10.1134/S1063782609010205
  61. W.S. Geleta, E. Alemayehu, B. Lennartz. Molecules, 27, 2527 (2022). DOI: 10.3390/molecules27082527
  62. S. Al-Thawadi, A.S.A. Rasool, K. Youssef. J. Bioanalysis \& Biomedicine, 9 (6), 299 (2017). DOI: 10.4172/1948-593X.1000197
  63. K. Shah, K. Agheda, M. Ahire, K.V.R. Murthy, B. Chakrabarty. Bull. Mater. Sci., 46, 186 (2023). DOI: 10.1007/s12034-023-03012-3
  64. A. Igityan, N. Aghamalyan, R. Hovsepyan, S. Petrosyan, G. Badalyan, I. Gambaryan, A. Papikyan, Y. Kafadaryan. Semiconductors, 54 (2), 163 (2020). DOI: 10.1134/S1063782620020104
  65. K. Wang, Y. Wu, H. Li, M. Li, F. Guan, H. Fan. J. Inorganic Biochemistry, 141, 36 (2014). DOI: 10.1016/j.jinorgbio.2014.08.009

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru