Spectral properties of composite materials based on nanoporous high-silica glasses activated by silver and lanthanum ions
Girsova M. A.
1, Golovina G. F.
1, Anfimova I. N.
1, Kurilenko L. N.
1, Saratovskii A.S.
11Grebenschikov Institute of Silicate Chemistry RAS, Saint-Petersburg, Russia
Email: girsovama@yandex.ru
Spectral properties of composite materials based on matrices of high-silica porous glasses activated by silver ions and lanthanum ions have been investigated. The optical density spectra (270-900 nm) and infrared transmittance spectra (11000-9000 and 9000-4000 cm-1) of composite materials of different compositions subjected to heat treatment according to one of three modes (120, 500 and 800oC) have been considered. The synthesized composite materials were investigated by X-ray powder diffraction method and energy-dispersive X-ray spectroscopy. The analysis of optical spectra permitted to identify the formation of molecular clusters, clusters, dimers and silver nanoparticles, as well as absorption bands related to charge transfer O2+->La3+ (282, 285, 300 nm) and to lanthanum nanoparticles (282, 285 nm) under different conditions of synthesis of composite materials. It was found that the change in the mode of thermal treatment of composites leads to changes in the IR spectra of composites, and the change in their composition leads to the appearance of additional bands associated with the oxygen atom of the OH-group, which can coordinate with several neighboring lanthanum atoms. Keywords: composite materials, high-silica porous glass, silver, lanthanum, near infrared spectroscopy, optical spectroscopy, X-ray powder diffraction method, energy-dispersive X-ray spectroscopy.
- G. Abdulkareem-Alsultan, N. Asikin-Mijan, N. Mansir, H.V. Lee, Z. Zainal, A. Islam, Y.H. Taufiq-Yap. J. Analyt. Appl. Pyrolysis, 137, 171 (2019). DOI: 10.1016/j.jaap.2018.11.023
- C.R. Michel, A.H. Marti nez-Preciado. Sensors and Actuators B: Chemical, 208, 355 (2015). DOI: 10.1016/j.snb.2014.11.034
- J. Fonseca. Frontiers of Materials Science, 16, 220607 (2022). DOI: 10.1007/s11706-022-0607-7
- M.A.U. Haq, K. Hussain, Z. Aslam, A.R. Umar, M.R. Shan, Sirajuddin, Mujeeb-ur-Rehman, S.T.H. Sherazi, J. Nisar. Microchemical J., 185, 108289 (2023). DOI: 10.1016/j.microc.2022.108289
- H.M.A. Dayem, S.S. Al-Shihry, S.A. Hassan. J. Rare Earths, 37 (5), 500 (2019). DOI: 10.1016/j.jre.2018.09.003
- N. Zhao, M.-M. Yao, F. Li, F.-P. Lou. J. Solid-State Chemistry, 184 (10), 2770 (2011). DOI: 10.1016/j.jssc.2011.08.014
- Y. Gao, Y. Masuda, K. Koumoto. J. Colloid and Interface Science, 274, 392 (2004). DOI: 10.1016/j.jcis.2004.02.050
- G. Gao, L. Yang, B. Dai, F. Xia, Z. Yang, S. Guo, P. Wang, F. Geng, J. Han, J. Zhu. Surface \& Coatings Technology, 365, 164 (2019). DOI: 10.1016/j.surfcoat.2018.07.001
- Q. Mu, Y. Wang. J. Alloys and Compounds, 509 (2), 396 (2011). DOI: 10.1016/j.jallcom.2010.09.041
- M.A. Girsova, T.V. Antropova, G.F. Golovina, I.N. Anfimova, L.N. Kurilenko, M.Yu. Arsent'ev. IOP Conference Series: Materials Science and Engineering, 704, 012004 (2019). DOI: 10.1088/1757-899X/704/1/012004
- M.A. Girsova, L.N. Kurilenko, I.N. Anfimova, M.Yu. Arsent'ev, L.F. Dikaya, E.A. Semenova. Russian Chemical Bulletin, 69 (5), 920 (2020). DOI: 10.1007/s11172-020-2849-9
- M.A. Girsova, G.F. Golovina, L.N. Kurilenko, I.N. Anfimova. Glass Physics and Chemistry, 46 (6), 541 (2020). DOI: 10.1134/S1087659620060097
- R. Jbeli, A. Boukhachem, I.B. Jemaa, N. Mahdhi, F. Saadallah, H. Elhouichet, S. Alleg, M. Amlouk, H. Ezzaoui a. Spectrochim. Acta Part A: Molecular and Biomolecular Spectroscopy, 184 (5), 71 (2017). DOI: 10.1016/j.saa.2017.04.072
- T. Antropova, M. Girsova, I. Anfimova, I. Drozdova, I. Polyakova, N. Vedishcheva. J. Non-Crystalline Solids, 401, 139 (2014). DOI: 10.1016/j.jnoncrysol.2014.01.033
- M.A. Girsova, G.F. Golovina, L.N. Kurilenko, I.N. Anfimova. Glass Physics and Chemistry, 47 (Suppl. 1), S36 (2021). DOI: 10.1134/S1087659621070051
- R.A. Lidin, L.L. Andreeva, V.A. Molochko. Konstanty neorganichekikh veshchestv: spravochnik (Drofa, Moskva, 2008), 73, 124 (in Russian)
- K. Otto, I.O. Acik, M. Krunks, K. Tonsuaadu, A. Mere. J. Thermal Analysis and Calorimetry, 118, 1065 (2014). DOI: 10.1007/s10973-014-3814-3
- T.V. Antropova. Fiziko-khimicheskite protsessy cozdaniya poristykh stekol i vysokokremnezemnykh materialov na osnove likviruyushchikh shchelochnoborosilikantnykh sistem. Diss. dokt. khim. nauk. (Institut khimii silikatov im. I.V. Grebenshchikova RAN, Sankt-Peterburg, 2005), 588 pages (in Russian)
- T.V. Antropova, I.A. Drozdova. Optica Applicata, 33 (1), 13 (2003)
- T.V. Antropova, A.V. Volkova, D.V. Petrov, S.V. Stolyar, L.E. Ermakova, M.P. Sidorova, E.B. Yakovlev, I.A. Drozdova. Optica Applicata, 35 (4), 717 (2005)
- T.V. Antropova, I.A. Drozdova, T.N. Vasilevskaya, A.V. Volkova, L.E. Ermakova, M.P. Sidorova. Glass Physics and Chemistry, 33 (2), 109 (2007). DOI: 10.1134/S1087659607020034
- T.V. Antropova, S.V. Stolyar, I.N. Anfimova, M.A. Girsova. Glass Physics and Chemistry, 47 (4), 329 (2021). DOI: 10.1134/S1087659621040040
- A. Igityan, N. Aghamalyan, S. Petrosyan, I. Gambaryan, G. Badalyan, R. Hovsepyan, Y. Kafadaryan. Appl. Phys. A, 123, 448 (2017). DOI: 10.1007/s00339-017-1057-4
- T.A. Hamdalla, T.A. Hanafy. Optik, 127 (2), 878 (2016). DOI: 10.1016/j.ijleo.2015.10.187
- V.A. Nikitin, A.N. Sidorov, A.V. Karyakin. Russian Journal of Physical Chemistry, 30 (1), 117 (1956)
- O. Humbach, H. Fabian, U. Grzesik, U. Haken, W. Heitmann. J. Non-Crystalline Solids, 203, 19 (1996). DOI: 10.1016/0022-3093(96)00329-8
- A. Baraldi, R. Capelletti, N. Chiodini, C. Mora, R. Scotti, E. Uccellini, A. Vedda. Nuclear Instruments and Methods in Physics Research A, 486 (1-2), 408 (2002). DOI: 10.1016/S0168-9002(02)00743-X
- M.A. Girsova, G.F. Golovina, I.N. Anfimova, L.N. Kurilenko. Glass Physics and Chemistry, 44 (5), 381 (2018). DOI: 10.1134/S1087659618050061
- M.A. Girsova, G.F. Golovina. Glass Physics and Chemistry, 44 (6), 569 (2018). DOI: 10.1134/S1087659618060068
- M.A. Girsova, G.F. Golovina, L.N. Kurilenko, I.N. Anfimova. Glass Physics and Chemistry, 46 (6), 531 (2020). DOI: 10.1134/S1087659620060085
- M.A. Girsova, T.V. Antropova, G.F. Golovina, I.N. Anfimova, L.N. Kurilenko. Opt. Spectrosc., 131 (1), 80 (2023). DOI: 10.21883/EOS.2023.01.55521.4040-22
- J.T. Kloprogge, R.D. Schuiling, Z. Ding, L. Hickey, D. Wharton, R.L. Frost. Vibrational Spectroscopy, 28 (2), 209 (2002). DOI: 10.1016/S0924-2031(01)00139-4
- U. Bauer, H. Behrens, M. Fechtelkord, S. Reinsch, J. Deubener. J. Non-Crystalline Solids, 423--424, 58 (2015). DOI: 10.1016/j.jnoncrysol.2015.05.004
- R. Balzer, H. Behrens, S. Schuth, T. Waurischk, S. Reinsch, R. Muller, M. Fechtelkord, J. Deubener. J. Non-Crystalline Solids, 519, 119454 (2019). DOI: 10.1016/j.jnoncrysol.2019.05.030
- D.A. Klyukin, V.D. Dubrovin, A.S. Pshenova, S.E. Putilin, T.A. Shakhverdov, A.N. Tsypkin, N.V. Nikonorov, A.I. Sidorov. Optical Engineering, 55 (6), 067101 (2016). DOI: 10.1117/1.OE.55.6.067101
- M.V. Stolyarchuk, A.I. Sidorov. Opt. Spectrosc., 125 (3), 305 (2018). DOI: 10.1134/s0030400x18090229
- B.G. Ershov, E.A. Abkhalimov, N.L. Sukhov. High Energy Chemistry, 39 (2), 55 (2005). DOI: 10.1007/s10733-005-00261
- M. Mostafavi, M.O. Delcourt, G. Picq. Radiation Physics and Chemistry, 41 (3), 453 (1993). DOI: 10.1016/0969-806x(93)90004-e
- B.M. Sergeev, G.B. Sergeev. Colloid J., 69(5), 639 (2007). DOI: 10.1134/S1061933X07050158
- J.-G. Kang, Y.-Il Kim, D.W. Cho, Y. Sohn. Materials Science in Semiconductor Processing, 40, 737 (2015). DOI: 10.1016/j.mssp.2015.07.050
- R. Dovnar, A. Vasilkov, I. Dovnar, N. Iaskevich. Cardiology in Belarus, 15 (1), 99 (2023). DOI: 10.34883/PI.2023.15.1.008 (in Russian)
- S. Lecoultre, A. Rydlo, J. Buttet, C. Felix, S. Gilb, W. Harbich. The J. Chemical Physics, 134, 184504 (2011). DOI: 10.1063/1.3589357
- G.A. Ozin, H. Huber. Inorganic Chemistry, 17 (1), 155 (1978)
- S. Fedrigo, W. Harbich, J. Buttet. J. Chem. Phys., 99 (8), 5712 (1993). DOI: 10.1063/1.465920
- C. Felix, C. Sieber, W. Harbich, J. Buttet, I. Rabin, W. Schulze, G. Ertl. Chem. Phys. Lett., 313, 105 (1999)
- A.V. Vostokov, A.I. Ignat'ev, N.V. Nikonorov, O.A. Podsvirov, A.I. Sidorov, A.V. Nashchekin, R.V. Sokolov, O.A. Usov, V.A. Tsekhomskii. Technical Physics Letters, 35 (9), 812 (2009). DOI: 10.1134/S1063785009090089
- C.G. Hu, H. Liu, W.T. Dong, Y.Y. Zhang, G. Bao, C.S. Lao, Z.L. Wang. Advanced Materials, 19 (3), 470 (2007). DOI: 10.1002/adma.200601300
- A.J. Haes, C.L. Haynes, A.D. McFarland, G.C. Schatz, R.P. Van Duyne, S. Zou. MRS Bulletin, 30, 368 (2005). DOI: 10.1557/mrs2005.100
- M.C. Mathpal, P. Kumar, S. Kumar, A.K. Tripathi, M.K. Singh, J. Prakash, A. Agarwal. RSC Advances, 5 (17), 12555 (2015). DOI: 10.1039/c4ra14061c
- A.E. Abbass, H.C. Swart, R.E. Kroon. J. Sol-Gel Science and Technology, 76 (3), 708 (2015). DOI: 10.1007/s10971-015-3825-y
- M.V. Shestakov, M. Meledina, S. Turner, V.K. Tikhomirov, N. Verellen, V.D. Rodri guez, J.J. Velazquez, G. Van Tendeloo, V.V. Moshchalkov. J. Appl. Phys., 114 (7), 073102 (2013). DOI: 10.1063/1.4818830
- P.A. Obraztsov, A.V. Nashchekin, A.V. Panfilova, P.N. Brunkov, N.V. Nikonorov, A.I. Sidorov. Physics of the Solid State, 55 (6), 1272 (2013). DOI: 10.1134/S1063783413060267
- J. Belloni, M. Mostafavi, H. Remita, J.-L. Marignier, M.-O. Delcourt. New J. Chemistry, 22 (11), 1239 (1998). DOI: 10.1039/a801445k
- H.A. Oualid, Y. Essamlali, O. Amadine, K. Daanoun, M. Zahouily. Ceramics International, 43 (16), 13786 (2017). DOI: 10.1016/j.ceramint.2017.07.097
- H.A. Oualid, O. Amadine, Y. Essamlali, I.M. Kadmiri, H.El. Arroussi, M. Zahouily. Nanoscale Advances, 1 (8), 3151 (2019). DOI: 10.1039/c9na00075e
- C. Tonna, C. Wang, D. Mei, S.V. Lamaka, M.L. Zheludkevich, J. Buhagiar. Bioactive Materials, 7, 426 (2022). DOI: 10.1016/j.bioactmat.2021.05.48
- H. Xu, J. Xie, W. Jia, G. Wu, Y. Cao. J. Colloid and Interface Science, 516, 511 (2018). DOI: 10.1016/j.jcis.2018.01.071
- H. Yang, J. Tian, T. Li, H. Cui. Catalysis Communications, 87, 82 (2016). DOI: 10.1016/j.catcom.2016.09.013
- V.A. Kukartsev, A.I. Cherepanov, V.V. Kukartsev, V.S. Tynchenko, V.V. Bukhtoyarov, A.M. Popov, R.B. Sergienko, S.V. Tynchenko. Minerals, 12 (2), 233 (2022). DOI: 10.3390/min12020233
- E.B. Shadrin, D.A. Kurdyukov, A.V. Ilinskiy, V.G. Golubev. Semiconductors, 43 (1), 102 (2009). DOI: 10.1134/S1063782609010205
- W.S. Geleta, E. Alemayehu, B. Lennartz. Molecules, 27, 2527 (2022). DOI: 10.3390/molecules27082527
- S. Al-Thawadi, A.S.A. Rasool, K. Youssef. J. Bioanalysis \& Biomedicine, 9 (6), 299 (2017). DOI: 10.4172/1948-593X.1000197
- K. Shah, K. Agheda, M. Ahire, K.V.R. Murthy, B. Chakrabarty. Bull. Mater. Sci., 46, 186 (2023). DOI: 10.1007/s12034-023-03012-3
- A. Igityan, N. Aghamalyan, R. Hovsepyan, S. Petrosyan, G. Badalyan, I. Gambaryan, A. Papikyan, Y. Kafadaryan. Semiconductors, 54 (2), 163 (2020). DOI: 10.1134/S1063782620020104
- K. Wang, Y. Wu, H. Li, M. Li, F. Guan, H. Fan. J. Inorganic Biochemistry, 141, 36 (2014). DOI: 10.1016/j.jinorgbio.2014.08.009
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.