Physics of the Solid State
Volumes and Issues
Functionalization of Co1-xZnxFe2O4 nanoparticles with polyethylene glycol (Co1-xZnxFe2O4@PEG) (at x=0, 0.1, 0.2, 0.4 and 0.6) for biomedical applications
Kamzin A. S.1, Semenov V. G.2, Kamzina L. S.1
1Ioffe Institute, St. Petersburg, Russia
2St. Petersburg State University, St. Petersburg, Russia
Email: ASKAM@mail.ioffe.ru

PDF
Extensive research on magnetic nanoparticles (MNPs) has shown their enormous potential for use in various fields, including biomedicine. However, the created MNPs must have long-term colloidal stability, which is not an easy task, since chemical, physical, biological factors and conditions must be taken into account when synthesizing and functionalizing MNPs for a specific application. By regulating the nature of the core (particle), shell (coating) and ligands (coating material), it is possible to create nanocomposites (MNCs) with MNPs-term colloidal stability for a wide range of applications, including for the diagnosis and therapy of various diseases with the required biocompatibility and functionality. In this regard, the work is devoted to the synthesis of MNP Co1-xZnxFe2O4, the functionalization (coating) of particles with polyethylene glycol (PEG) and studies of the effect of coating on the properties of the obtained MNCs Co1-xZnxFe2O4@PEG. Fourier transform infrared spectroscopy (IR-PF), X-ray diffraction (XRD) and Mossbauer spectroscopy (MSp) were used to study the properties of MNPs and MNCs. The formation of a PEG layer on particles has been confirmed by infrared spectroscopy. The analysis of the Mossbauer spectra and distribution functions of effective magnetic fields suggests that during the functionalization of MNPs Co1-xZnxFe2O4 particles with approximately the same properties combine and form clusters coated with a surfactant. Heating of MNC Co1-xZnxFe2O4@PEG (0≤ x≤0.4) the temperature required for hyperthermic therapy (44-46oC) is reached in 60 seconds when an external alternating magnetic field with a frequency of 2.0 MHz and a strength of 4.5 kA/m is applied. Synthesized and PEG-coated MNCs Co1-xZnxFe2O4@PEG can be used for magnetic resonance imaging, Keywords: agnetic nanoparticles, particle functionalization, magnetic liquids, Mossbauer spectroscopy.
  1. Ferrite Nanostructured Magnetic Materials Technologies and Applications / Ed. Jitendra Pal Singh, Keun Hwa Chae, Ramesh Chandra Srivastava, Ovidiu Florin Caltun. 1st ed. Woodhead Publishing (2023). 926 p
  2. Magnetic Nanoparticles for Biomedical Applications / Ed. Martin F. Desimone, Rajshree B. Jotania. Publ. Mater. Res. Forum LLC. USA (2023). 316 p
  3. A. Mittal, I. Roy, S. Gandhi. Magnetochemistry 8, 107 (2022). https://doi.org/10.3390/magnetochemistry8090107
  4. M. Hepel. Magnetochemistry 6, 3 (2020). DOI: 10.3390/magnetochemistry6010003
  5. V. Socoliuc, D. Peddis, V.I. Petrenko, M.V. Avdeev, D. Susan-Resiga, T. Szabo, R. Turcu, E. Tombacz, L. Vekas. Nanoscale 14, 4786 (2022). DOI: 10.1039/d1nr05841j
  6. S.I. Ahmad. J. Magn. Magn. Mater. 562, 169840 (2022). https://doi.org/10.1016/j.jmmm.2022.169840
  7. B. Pacakova, S. Kubickova, A. Reznickova, D. Niznansky, J. Vejpravova. Spinel Ferrite Nanoparticles: Correlation of Structure and Magnetism. In: Magnetic Spinels --- Synthesis, Properties and Applications. TechOpen / Ed. M.S. Seehra. (2017). Ch. 1. P. 4--29. DOI: 10.5772/66074
  8. M.G. Goodarz, E.B. Saion, M.H. Hashim, A.H. Shaari, H.A. Ahangar. Solid State Commun. 15, 1031 (2011). https://doi.org/10.1016/j.ssc.2011.04.018
  9. E.C. Mendonca, C.B.R. Jesus, C.T. Meneses, J.G.S. Duque. J. Supercond. Nov. Magn. 26, 2329 (2013). DOI: 10.1007/s10948-012-1426-3
  10. G. Vaidyanathana, S. Sendhilnathan. Physica B 403, 2157 (2008)
  11. A.S. Kamzin, D.S. Nikam, S.H. Pawar. Phys. Solid State 59, 1, 156 (2017). https://link.springer.com/article/10.1134/S1063783417010127
  12. A.S. Kamzin, I.M. Obaidat, V.G. Semenov, V. Narayanaswamy, I.A. Al-Omari, B. Issa, I.V. Buryanenko. Phys. Solid State 65, 3, 470 (2023). DOI: 10.21883/PSS.2023.03.55591.544.
  13. V. Narayanaswamy, I.A. Al-Omari, A.S. Kamzin, B. Issa, H.O. Tekin, H. Khourshid, H. Kumar, A. Mallya, S. Sambasivam, I.M. Obaidat. Nanomater. 11, 5, 1231 (2021). https://doi.org/10.3390/nano11051231
  14. A. Doaga, A.M. Cojocariu, C.P. Constantin, R. Hempelmann, O.F. Caltun. AIP Conf. Proc. 1564, 123 (2013). DOI: 10.1063/1.4832806
  15. M. Albino, E. Fantechi, C. Innocenti, A. Lopez-Ortega, V. Bonanni, G. Campo, F. Pineider, M. Gurioli, P. Arosio, T. Orlando, G. Bertoni, C.D. Fernandez, A. Lascialfari, C. Sangregorio. J. Phys. Chem. C 123, 10, 6148 (2019). https://doi.org/10.1021/acs.jpcc.8b10998
  16. F. Sharifianjazi, M. Moradi, N. Parvin, A. Nemati, A.J. Rad, N. Sheysi, A. Abouchenari, A. Mohammadi, S. Karbasi, Z. Ahmadi, A. Esmaeilkhanian, M. Irani, A. Pakseresht, S. Sahmani, M.S. Asl. Ceram. Int. 46, 11, Part B, 18391 (2020)
  17. V. Socoliuc, M.V. Avdeev, V. Kuncser, Rodica Turcu, Etelka Tombacz, L. Vekas. Nanoscale 14, 4786 (2022). https://doi.org/10.1039/D1NR05841J
  18. D.S. Nikam, S.V. Jadhav, V.M. Khot, R.S. Ningthoujam, C.K. Hong, S.S. Malic, S.H. Pawar. RSC Adv. 4, 12662 (2014). DOI: 10.1039/c3ra47319h
  19. C. Nayek, K. Manna, G. Bhattacharjee, P. Murugavel, I. Obaidat. Magnetochemistry 3, 19 (2017). DOI: 10.3390/magnetochemistry3020019
  20. A.S. Karakoti, R. Shukla, R. Shanker, S. Singh. Adv. Colloid Interface Science 215, 28 (2015). http://dx.doi.org/10.1016/j.cis.2014.11.004
  21. Nguyen T.K. Thanh, Luke A.W. Green. Nano Today 5, 213 (2010). DOI: 10.1016/j.nantod.2010.05.003
  22. M. Mikhaylova, Y.S. Jo, D.K. Kim, N. Bobrysheva, Y. Andersson, T. Eriksson, M. Osmolowsky, V. Semenov, M. Muhammed. Hyperfine Interactions 156/157, 257 (2004)
  23. K. Mavzeika, V. Bevcyte, Yu.O. Tykhonenko-Polishchuk, M.M. Kulyk, O.V. Yelenich, A.I. Tovstolytkin. Lithuanian J. Phys. 58, 267 (2018)
  24. T.J. Daou, J.M. Grene`che, G. Pourroy, S. Buathong, A. Derory, C. Ulhaq-Bouillet, B. Donnio, D. Guillon, S. Begin-Colin. Chem. Mater. 20, 5869 (2008)
  25. W.B. Mdlalose, S.R. Mokhosi, S. Dlamini, T. Moyo, M. Singh. AIP Advances 8, 056726 (2018). https://doi.org/10.1063/1.5007760
  26. V. Kuncser, G. Schinteie, B. Sahoo, W. Keune, D. Bica, l. Vekas, G. Filoti. Roman. Rep. Phys. 58, 273 (2006)
  27. V. Kuncser, G. Schinteie, B. Sahoo, W. Keune, D. Bica, l. Vekas, G. Filoti. J. Phys.: Condens. Matter 19, 016205 (2007). DOI: 10.1088/0953-8984/19/1/016205
  28. M. Kaur, M. Kaur, D. Singh, A.C. Oliveira, V.K. Garg, V.K. Sharma. Nanomaterials 11, 1471 (2021). https:// doi.org/10.3390/nano11061471
  29. B. Wareppam, E. Kuzmann, V.K. Garg, L.H. Singh. J. Mater. Res. 28, 937 (2022). DOI: 10.1557/s43578-022-00665-4
  30. Materials Science and Materials Engineering. Comprehensive Nanoscience and Nanotechnology / Ed. S. M rup, M.F. Hansen, C. Frandsen. Magnetic Nanoparticles. V. 1 (2019). P. 89--140. https://doi.org/10.1016/B978-0-12-803581-8.11338-4
  31. C. Frandsen, S. M rup. Phys. Rev. Lett. 94, 039708 (2005)
  32. M. Sajida, J. P otka-Wasylka. Microchem. J. 154, 104623 (2020). https://doi.org/10.1016/j.microc.2020.104623
  33. A.S. Kamzin, I.M. Obaidat, V.G. Semenov, V. Narayanaswamy, I.A. Al-Omari, B. Issa, I.V. Buryanenko. Phys. Solid State. 64, 6, 714 (2022). DOI: 10.21883/PSS.2022.06.53838.298
  34. E. Umut, M. Coskun, H. Gungunes, V. Dupuis, A.S. Kamzin. J. Supercond. Nov. Magn. 34, 3, 913 (2021). https://doi.org/10.1007/s10948-020-05800-y
  35. A.S. Kamzin, I.M. Obaidat, A.A. Valliulin, V.G. Semenov, I.A. Al-Omari. Phys. Solid State 62, 11, 2167 (2020)]. DOI: 10.1134/S1063783420110153
  36. S. Morup, J.A. Dumesic, H. Tops e. In: Mossbauer spectroscopy applications / Ed. R.L. Cohen. Academic, N.Y. (1990). P. 1
  37. V. Kuncser, O. Crisan, G. Schinteie, F. Tolea, P. Palade, M. Valeanu, G. Filoti. Modern Trends in Nanoscience. Editura Academiei Romane, Bucharest (2013). V. 197
  38. V.G. Semenov, V.V. Panchuk. Programma matematicheskoy obrabotki messbauerovskikh spectrov MossFit. Chast. soobschenie (2015). (in Russian)
  39. P.A. Rao, K.S. Rao, T.R.K.P. Raju, G. Kapusetti, M. Choppadandi, M.C. Varma, K.H. Rao. J. Alloys Comp. 794, 60 (2019). https://doi.org/10.1016/j.jallcom.2019.04.242
  40. M.I.A.A. Maksoud, A. El-Ghandour, G.S. El-Sayyad, R.A. Fahim, A.H. l-Hanbaly, M. Bekhit, E.K. Abdel-Khalek, H.H. El-Bahnasawy, M.A. Elkodous, A.H. Ashour, A.S. Awed. J. Inorg. Organomet. Polym. Mater. 30, 3709 (2020). https://doi.org/10.1007/s10904-020-01523-8
  41. D.S. Nikam, S.V. Jadhav, V.M. Khot, R.A. Bohara, C.K. Hong, S.S. Malib, S.H. Pawar. RSC Adv. 5, 2338 (2015). https://doi.org/10.1039/c4ra08342c
  42. M.S. Hossain, Md.B. Alam, M. Shahjahan, M.H.A. Begum, Md.M. Hossain, S. Islam, N. Khatun, M. Hossain, M.S. Alam, Md. Al-Mamun. J. Adavanc. Dielectr. 8, 4, 1850030 (2018). DOI: 10.1142/S2010135X18500303
  43. K.M. Batoo, E.H. Raslan, Y. Yang, S.F. Adil, M. Khan, A. Imran, Y. Al-Douri. AIP Advances 9, 055202 (2019); https://doi.org/10.1063/1.5078411
  44. J. Lopez, W.R. Aguirre-Contreras, M.E. Gomez, G. Zambrano. Int. J. Appl. Natur. Sci. 6, 2, 47 (2017)
  45. M.B. Ali, K.E. Maalam, H.E. Moussaoui, O. Mounkachi, M. Hamedoun, R. Masrour, E.K. Hlil, A. Benyoussef. J. Magn. Magn. Mater. 398, 20 (2016). http://dx.doi.org/10.1016/j.jmmm.2015.08.097
  46. V. Bartunvek, D. Sedmidubsky, vS. Huber, M. vSvecova, P. Ulbrich, O. Jankovsky. Materials 11, 1241 (2018). DOI: 10.3390/ma11071241
  47. N. Monni, V. Mameli, S.A. Sahadevan, S. Gai, C. Cannas, M.L. Mercuri. J. Nanosci. Nanotechnology 19, 5043 (2019). DOI: 10.1166/jnn.2019.16792
  48. Y. Koseoglu, A. Baykal, M.S. Toprak, F. Gozuak, A.C. Basaran, B. Aktas. J. Alloys Comp. 462, 209 (2008)
  49. X.H. Liu, J. Yang, L. Wang, X.J. Yang, L.D. Lu. Mater. Sci. Eng. A 289, 7483 (2003)
  50. V.M. Khotn, A.B. Salunkhe, J.M. Ruso, S.H. Pawar. J. Magn. Magn. Mater. 384, 335 (2015)
  51. G.A. Sawatzky, F. Van Der Woude, A.H. Morrish. Phys. Rev. 187, 2, 747 (1969)
  52. F. van Der Woude, G.A. Sawatzky. Phys. Rev. B 4, 9, 3159 (1971)
  53. Q. Lin, J. Xu, F. Yang, J. Lin, H. Yang, Y. He. Materials 11, 10, 1799 (2018). DOI: 10.3390/ma11101799
  54. S.C. Bhargava, P.K. Iyengar. Phys. Status Solidi B 53, 1, 359 (1972). https://doi.org/10.1002/pssb.2220530138
  55. G.V. Duong, N. Hanh, D.V. Linh, R. Groessinger, P. Weinberger, E. Schafler, M. Zehetbauer. J. Magn. Magn Mater. 311, 1, 46 (2007). https://doi.org/10.1016/j.jmmm.2006.11.167
  56. R.H. Kodama, A.E. Berkowitz, E.J. McNiff, S. Foner. J. Appl. Phys. 81, 8, 5552 (1997). DOI: 10.1063/1.364659
  57. A.S. Kamzin, V.G. Semenov, I.A. Al-Omari, V. Narayanaswamy, B. Issa. Phys. Solid State 65, 8, 1363 (2023). DOI: 10.21883/PSS.2023.08.56586.122
  58. A.S. Kamzin, N. Dogan, O.M. Dogan, V.G. Semenov. Phys. Solid State 65, 8, 1373 (2023). DOI: 10.21883/PSS.2023.08.56587.127
  59. K. Haneda, A.H. Morrish. J. Appl. Phys. 63, 8, 4258 (1988). DOI: 10.1063/1.340197
  60. J.M.D. Coey. Phys. Rev. Lett. 27, 17, 1140 (1971)
  61. Mossbauer Spectroscopy Applied to Magnetism and Material Science / Eds G.J. Long, F. Grandjean. Plenum Press, N.Y. (1993). 479 p
  62. A.S. Kamzin, L.P. Ol'khovik, V.L. Rozenbaum. JETP 84, 4, 788 (1997)
  63. A.S. Kamzin, L.A. Grigor'ev. Sov. Tech. Phys. Lett. 6, 6, 417 (1990)
  64. M.E. Matsnev, V.S. Rusakov. AIP Conf. Proc. 1489, 1, 178 (2012)
  65. G.N. Konygin, O.M. Nemtsova, V.E. Porsev. Zhurn. priklad. spektroskopii 86, 3, 374 (2019). (in Russian)
  66. S. M rup. Hyperfine Interactions 90, 171 (1994). https://doi.org/10.1007/BF02069126
  67. P.V. Hendriksen, C.A. Oxborrow, S. Linderoth, S. Morup, M. Hanson, C. Johansson, F. Bi;ldker, K. Davies, S.W. Charles, S. Wells. Nucl. Instr. Meth. B 76, 138 (1993)
  68. J. Jing, F. Zhao, X. Yang, U. Gonser. Hyperfine Interactions 54, 571 (1990)
  69. J. Giri, P. Pradhan, T. Sriharsha, D. Bahadur. AIP J. Appl. Phys. 97, 10Q916 (2005). https://doi.org/10.1063/1.1855131
  70. R. Hergt, R. Hiergeist, M. Zeisberger, G. Glockl, W. Weitschies, L.P. Ramirez, I. Hilger, W.A. Kaiser. J. Magn. Magn. Mater. 280, 358 (2004).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru