Kamzin A. S.1, Semenov V. G.2, Kamzina L. S.1
1Ioffe Institute, St. Petersburg, Russia
2St. Petersburg State University, St. Petersburg, Russia
Email: ASKAM@mail.ioffe.ru
Extensive research on magnetic nanoparticles (MNPs) has shown their enormous potential for use in various fields, including biomedicine. However, the created MNPs must have long-term colloidal stability, which is not an easy task, since chemical, physical, biological factors and conditions must be taken into account when synthesizing and functionalizing MNPs for a specific application. By regulating the nature of the core (particle), shell (coating) and ligands (coating material), it is possible to create nanocomposites (MNCs) with MNPs-term colloidal stability for a wide range of applications, including for the diagnosis and therapy of various diseases with the required biocompatibility and functionality. In this regard, the work is devoted to the synthesis of MNP Co1-xZnxFe2O4, the functionalization (coating) of particles with polyethylene glycol (PEG) and studies of the effect of coating on the properties of the obtained MNCs Co1-xZnxFe2O4@PEG. Fourier transform infrared spectroscopy (IR-PF), X-ray diffraction (XRD) and Mossbauer spectroscopy (MSp) were used to study the properties of MNPs and MNCs. The formation of a PEG layer on particles has been confirmed by infrared spectroscopy. The analysis of the Mossbauer spectra and distribution functions of effective magnetic fields suggests that during the functionalization of MNPs Co1-xZnxFe2O4 particles with approximately the same properties combine and form clusters coated with a surfactant. Heating of MNC Co1-xZnxFe2O4@PEG (0≤ x≤0.4) the temperature required for hyperthermic therapy (44-46oC) is reached in 60 seconds when an external alternating magnetic field with a frequency of 2.0 MHz and a strength of 4.5 kA/m is applied. Synthesized and PEG-coated MNCs Co1-xZnxFe2O4@PEG can be used for magnetic resonance imaging, Keywords: agnetic nanoparticles, particle functionalization, magnetic liquids, Mossbauer spectroscopy.
- Ferrite Nanostructured Magnetic Materials Technologies and Applications / Ed. Jitendra Pal Singh, Keun Hwa Chae, Ramesh Chandra Srivastava, Ovidiu Florin Caltun. 1st ed. Woodhead Publishing (2023). 926 p
- Magnetic Nanoparticles for Biomedical Applications / Ed. Martin F. Desimone, Rajshree B. Jotania. Publ. Mater. Res. Forum LLC. USA (2023). 316 p
- A. Mittal, I. Roy, S. Gandhi. Magnetochemistry 8, 107 (2022). https://doi.org/10.3390/magnetochemistry8090107
- M. Hepel. Magnetochemistry 6, 3 (2020). DOI: 10.3390/magnetochemistry6010003
- V. Socoliuc, D. Peddis, V.I. Petrenko, M.V. Avdeev, D. Susan-Resiga, T. Szabo, R. Turcu, E. Tombacz, L. Vekas. Nanoscale 14, 4786 (2022). DOI: 10.1039/d1nr05841j
- S.I. Ahmad. J. Magn. Magn. Mater. 562, 169840 (2022). https://doi.org/10.1016/j.jmmm.2022.169840
- B. Pacakova, S. Kubickova, A. Reznickova, D. Niznansky, J. Vejpravova. Spinel Ferrite Nanoparticles: Correlation of Structure and Magnetism. In: Magnetic Spinels --- Synthesis, Properties and Applications. TechOpen / Ed. M.S. Seehra. (2017). Ch. 1. P. 4--29. DOI: 10.5772/66074
- M.G. Goodarz, E.B. Saion, M.H. Hashim, A.H. Shaari, H.A. Ahangar. Solid State Commun. 15, 1031 (2011). https://doi.org/10.1016/j.ssc.2011.04.018
- E.C. Mendonca, C.B.R. Jesus, C.T. Meneses, J.G.S. Duque. J. Supercond. Nov. Magn. 26, 2329 (2013). DOI: 10.1007/s10948-012-1426-3
- G. Vaidyanathana, S. Sendhilnathan. Physica B 403, 2157 (2008)
- A.S. Kamzin, D.S. Nikam, S.H. Pawar. Phys. Solid State 59, 1, 156 (2017). https://link.springer.com/article/10.1134/S1063783417010127
- A.S. Kamzin, I.M. Obaidat, V.G. Semenov, V. Narayanaswamy, I.A. Al-Omari, B. Issa, I.V. Buryanenko. Phys. Solid State 65, 3, 470 (2023). DOI: 10.21883/PSS.2023.03.55591.544.
- V. Narayanaswamy, I.A. Al-Omari, A.S. Kamzin, B. Issa, H.O. Tekin, H. Khourshid, H. Kumar, A. Mallya, S. Sambasivam, I.M. Obaidat. Nanomater. 11, 5, 1231 (2021). https://doi.org/10.3390/nano11051231
- A. Doaga, A.M. Cojocariu, C.P. Constantin, R. Hempelmann, O.F. Caltun. AIP Conf. Proc. 1564, 123 (2013). DOI: 10.1063/1.4832806
- M. Albino, E. Fantechi, C. Innocenti, A. Lopez-Ortega, V. Bonanni, G. Campo, F. Pineider, M. Gurioli, P. Arosio, T. Orlando, G. Bertoni, C.D. Fernandez, A. Lascialfari, C. Sangregorio. J. Phys. Chem. C 123, 10, 6148 (2019). https://doi.org/10.1021/acs.jpcc.8b10998
- F. Sharifianjazi, M. Moradi, N. Parvin, A. Nemati, A.J. Rad, N. Sheysi, A. Abouchenari, A. Mohammadi, S. Karbasi, Z. Ahmadi, A. Esmaeilkhanian, M. Irani, A. Pakseresht, S. Sahmani, M.S. Asl. Ceram. Int. 46, 11, Part B, 18391 (2020)
- V. Socoliuc, M.V. Avdeev, V. Kuncser, Rodica Turcu, Etelka Tombacz, L. Vekas. Nanoscale 14, 4786 (2022). https://doi.org/10.1039/D1NR05841J
- D.S. Nikam, S.V. Jadhav, V.M. Khot, R.S. Ningthoujam, C.K. Hong, S.S. Malic, S.H. Pawar. RSC Adv. 4, 12662 (2014). DOI: 10.1039/c3ra47319h
- C. Nayek, K. Manna, G. Bhattacharjee, P. Murugavel, I. Obaidat. Magnetochemistry 3, 19 (2017). DOI: 10.3390/magnetochemistry3020019
- A.S. Karakoti, R. Shukla, R. Shanker, S. Singh. Adv. Colloid Interface Science 215, 28 (2015). http://dx.doi.org/10.1016/j.cis.2014.11.004
- Nguyen T.K. Thanh, Luke A.W. Green. Nano Today 5, 213 (2010). DOI: 10.1016/j.nantod.2010.05.003
- M. Mikhaylova, Y.S. Jo, D.K. Kim, N. Bobrysheva, Y. Andersson, T. Eriksson, M. Osmolowsky, V. Semenov, M. Muhammed. Hyperfine Interactions 156/157, 257 (2004)
- K. Mavzeika, V. Bevcyte, Yu.O. Tykhonenko-Polishchuk, M.M. Kulyk, O.V. Yelenich, A.I. Tovstolytkin. Lithuanian J. Phys. 58, 267 (2018)
- T.J. Daou, J.M. Grene`che, G. Pourroy, S. Buathong, A. Derory, C. Ulhaq-Bouillet, B. Donnio, D. Guillon, S. Begin-Colin. Chem. Mater. 20, 5869 (2008)
- W.B. Mdlalose, S.R. Mokhosi, S. Dlamini, T. Moyo, M. Singh. AIP Advances 8, 056726 (2018). https://doi.org/10.1063/1.5007760
- V. Kuncser, G. Schinteie, B. Sahoo, W. Keune, D. Bica, l. Vekas, G. Filoti. Roman. Rep. Phys. 58, 273 (2006)
- V. Kuncser, G. Schinteie, B. Sahoo, W. Keune, D. Bica, l. Vekas, G. Filoti. J. Phys.: Condens. Matter 19, 016205 (2007). DOI: 10.1088/0953-8984/19/1/016205
- M. Kaur, M. Kaur, D. Singh, A.C. Oliveira, V.K. Garg, V.K. Sharma. Nanomaterials 11, 1471 (2021). https:// doi.org/10.3390/nano11061471
- B. Wareppam, E. Kuzmann, V.K. Garg, L.H. Singh. J. Mater. Res. 28, 937 (2022). DOI: 10.1557/s43578-022-00665-4
- Materials Science and Materials Engineering. Comprehensive Nanoscience and Nanotechnology / Ed. S. M rup, M.F. Hansen, C. Frandsen. Magnetic Nanoparticles. V. 1 (2019). P. 89--140. https://doi.org/10.1016/B978-0-12-803581-8.11338-4
- C. Frandsen, S. M rup. Phys. Rev. Lett. 94, 039708 (2005)
- M. Sajida, J. P otka-Wasylka. Microchem. J. 154, 104623 (2020). https://doi.org/10.1016/j.microc.2020.104623
- A.S. Kamzin, I.M. Obaidat, V.G. Semenov, V. Narayanaswamy, I.A. Al-Omari, B. Issa, I.V. Buryanenko. Phys. Solid State. 64, 6, 714 (2022). DOI: 10.21883/PSS.2022.06.53838.298
- E. Umut, M. Coskun, H. Gungunes, V. Dupuis, A.S. Kamzin. J. Supercond. Nov. Magn. 34, 3, 913 (2021). https://doi.org/10.1007/s10948-020-05800-y
- A.S. Kamzin, I.M. Obaidat, A.A. Valliulin, V.G. Semenov, I.A. Al-Omari. Phys. Solid State 62, 11, 2167 (2020)]. DOI: 10.1134/S1063783420110153
- S. Morup, J.A. Dumesic, H. Tops e. In: Mossbauer spectroscopy applications / Ed. R.L. Cohen. Academic, N.Y. (1990). P. 1
- V. Kuncser, O. Crisan, G. Schinteie, F. Tolea, P. Palade, M. Valeanu, G. Filoti. Modern Trends in Nanoscience. Editura Academiei Romane, Bucharest (2013). V. 197
- V.G. Semenov, V.V. Panchuk. Programma matematicheskoy obrabotki messbauerovskikh spectrov MossFit. Chast. soobschenie (2015). (in Russian)
- P.A. Rao, K.S. Rao, T.R.K.P. Raju, G. Kapusetti, M. Choppadandi, M.C. Varma, K.H. Rao. J. Alloys Comp. 794, 60 (2019). https://doi.org/10.1016/j.jallcom.2019.04.242
- M.I.A.A. Maksoud, A. El-Ghandour, G.S. El-Sayyad, R.A. Fahim, A.H. l-Hanbaly, M. Bekhit, E.K. Abdel-Khalek, H.H. El-Bahnasawy, M.A. Elkodous, A.H. Ashour, A.S. Awed. J. Inorg. Organomet. Polym. Mater. 30, 3709 (2020). https://doi.org/10.1007/s10904-020-01523-8
- D.S. Nikam, S.V. Jadhav, V.M. Khot, R.A. Bohara, C.K. Hong, S.S. Malib, S.H. Pawar. RSC Adv. 5, 2338 (2015). https://doi.org/10.1039/c4ra08342c
- M.S. Hossain, Md.B. Alam, M. Shahjahan, M.H.A. Begum, Md.M. Hossain, S. Islam, N. Khatun, M. Hossain, M.S. Alam, Md. Al-Mamun. J. Adavanc. Dielectr. 8, 4, 1850030 (2018). DOI: 10.1142/S2010135X18500303
- K.M. Batoo, E.H. Raslan, Y. Yang, S.F. Adil, M. Khan, A. Imran, Y. Al-Douri. AIP Advances 9, 055202 (2019); https://doi.org/10.1063/1.5078411
- J. Lopez, W.R. Aguirre-Contreras, M.E. Gomez, G. Zambrano. Int. J. Appl. Natur. Sci. 6, 2, 47 (2017)
- M.B. Ali, K.E. Maalam, H.E. Moussaoui, O. Mounkachi, M. Hamedoun, R. Masrour, E.K. Hlil, A. Benyoussef. J. Magn. Magn. Mater. 398, 20 (2016). http://dx.doi.org/10.1016/j.jmmm.2015.08.097
- V. Bartunvek, D. Sedmidubsky, vS. Huber, M. vSvecova, P. Ulbrich, O. Jankovsky. Materials 11, 1241 (2018). DOI: 10.3390/ma11071241
- N. Monni, V. Mameli, S.A. Sahadevan, S. Gai, C. Cannas, M.L. Mercuri. J. Nanosci. Nanotechnology 19, 5043 (2019). DOI: 10.1166/jnn.2019.16792
- Y. Koseoglu, A. Baykal, M.S. Toprak, F. Gozuak, A.C. Basaran, B. Aktas. J. Alloys Comp. 462, 209 (2008)
- X.H. Liu, J. Yang, L. Wang, X.J. Yang, L.D. Lu. Mater. Sci. Eng. A 289, 7483 (2003)
- V.M. Khotn, A.B. Salunkhe, J.M. Ruso, S.H. Pawar. J. Magn. Magn. Mater. 384, 335 (2015)
- G.A. Sawatzky, F. Van Der Woude, A.H. Morrish. Phys. Rev. 187, 2, 747 (1969)
- F. van Der Woude, G.A. Sawatzky. Phys. Rev. B 4, 9, 3159 (1971)
- Q. Lin, J. Xu, F. Yang, J. Lin, H. Yang, Y. He. Materials 11, 10, 1799 (2018). DOI: 10.3390/ma11101799
- S.C. Bhargava, P.K. Iyengar. Phys. Status Solidi B 53, 1, 359 (1972). https://doi.org/10.1002/pssb.2220530138
- G.V. Duong, N. Hanh, D.V. Linh, R. Groessinger, P. Weinberger, E. Schafler, M. Zehetbauer. J. Magn. Magn Mater. 311, 1, 46 (2007). https://doi.org/10.1016/j.jmmm.2006.11.167
- R.H. Kodama, A.E. Berkowitz, E.J. McNiff, S. Foner. J. Appl. Phys. 81, 8, 5552 (1997). DOI: 10.1063/1.364659
- A.S. Kamzin, V.G. Semenov, I.A. Al-Omari, V. Narayanaswamy, B. Issa. Phys. Solid State 65, 8, 1363 (2023). DOI: 10.21883/PSS.2023.08.56586.122
- A.S. Kamzin, N. Dogan, O.M. Dogan, V.G. Semenov. Phys. Solid State 65, 8, 1373 (2023). DOI: 10.21883/PSS.2023.08.56587.127
- K. Haneda, A.H. Morrish. J. Appl. Phys. 63, 8, 4258 (1988). DOI: 10.1063/1.340197
- J.M.D. Coey. Phys. Rev. Lett. 27, 17, 1140 (1971)
- Mossbauer Spectroscopy Applied to Magnetism and Material Science / Eds G.J. Long, F. Grandjean. Plenum Press, N.Y. (1993). 479 p
- A.S. Kamzin, L.P. Ol'khovik, V.L. Rozenbaum. JETP 84, 4, 788 (1997)
- A.S. Kamzin, L.A. Grigor'ev. Sov. Tech. Phys. Lett. 6, 6, 417 (1990)
- M.E. Matsnev, V.S. Rusakov. AIP Conf. Proc. 1489, 1, 178 (2012)
- G.N. Konygin, O.M. Nemtsova, V.E. Porsev. Zhurn. priklad. spektroskopii 86, 3, 374 (2019). (in Russian)
- S. M rup. Hyperfine Interactions 90, 171 (1994). https://doi.org/10.1007/BF02069126
- P.V. Hendriksen, C.A. Oxborrow, S. Linderoth, S. Morup, M. Hanson, C. Johansson, F. Bi;ldker, K. Davies, S.W. Charles, S. Wells. Nucl. Instr. Meth. B 76, 138 (1993)
- J. Jing, F. Zhao, X. Yang, U. Gonser. Hyperfine Interactions 54, 571 (1990)
- J. Giri, P. Pradhan, T. Sriharsha, D. Bahadur. AIP J. Appl. Phys. 97, 10Q916 (2005). https://doi.org/10.1063/1.1855131
- R. Hergt, R. Hiergeist, M. Zeisberger, G. Glockl, W. Weitschies, L.P. Ramirez, I. Hilger, W.A. Kaiser. J. Magn. Magn. Mater. 280, 358 (2004).
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.