Physics of the Solid State
Volumes and Issues
Comparative analysis of dislocation kink migration models in disordered solid solutions
Petukhovб B. V.1
1National Research Center “Kurchatov Institute”, Moscow, Russia
Email: petukhov@ns.crys.ras.ru

PDF
Models of dislocation kink migration in disordered solid solutions and alloys are analyzed. Mechanisms of interaction of kinks with impurity subsystem leading to the hardening of crystalline materials are studied. Various approaches to the description of statistical patterns of kinks overcoming random potential reliefs are critically discussed. Conceptual features of the movement of kinks in impurity materials, leading to disagreements in interpretations of the phenomenon are noted. Qualitative picture of the anomalous kinetics of kinks in disordered media is described. Keywords: dislocation kinks, solid solution hardening, random processes, anomalous kinetics.
  1. J.P. Hirth, J. Lothe. Theory of Dislocations. McGraw-Hill (1967)
  2. S. Takeuchi, T. Suzuki. Strength of Metals and Alloys (ICSMA 8). Pergamon (1989). P. 161-166
  3. U. Messerschmidt. Dislocation dynamics during plastic deformation / Ed. Hull R. Berlin. Springer Science \& Business Media, Heidelberg (2010)
  4. B.V. Petukhov. Dinamika dislokatsii v kristallicheskom rel'efe. Dislokatsionnye kinki i plastichnost' kristallicheskikh materialov. Saarbrucken: Lambert Academic Publishing (2016). ISBN 978-3-659-94939-5. EDN UVWRYG (in Russian)
  5. T. Vachaspati. Kinks and Domain Walls. An Introduction to Classical and Quantum Solitons. Cambridge University Press. Cambridge, N.Y. Melbourne, Madrid, Cape Town, Singapore, Sao Paulo (2006)
  6. One-Dimensional Nanostructures / Ed. Z.M. Wang. Springer Science + Business Media, N. Y. (2008)
  7. B. Petukhov. J. Stat. Mech. 2013, 7, P09019 (2013). doi:10.1088/1742-5468/2013/09/P09019
  8. Nanowires Science and Technology / Ed. N. Lupu. InTech (2010)
  9. Molecular Magnets. Physics and Applications / Eds J. Bartolome, F. Luis, J.P. Fernandez. Springer-Verlag, Berlin Heidelberg (2014)
  10. X. Sun, B. Yu, G. Ng, M. Meyyappan. One-Dimensional Nanostructures. In [8], 3, 273 (2010)
  11. E. Nadgornyi. Progr. Mater. Sci. 31, 1 (1988)
  12. P. Haasen. Physical Metallurgy 3. Elsevier (1996). Ch. 23, 2009
  13. A.S. Argon. Strengthening mechanisms in crystal plasticity. Oxford University Press (2008)
  14. E. Pink, R.J. Arsenault. Progr. Mater. Sci. 24, 1 (1980)
  15. B.V. Petukhov. Crystallogr. Rep. 52, 1, 112 (2007)
  16. C. Ren, Z.Z. Fang, M. Koopman, B. Butler, J. Paramore, S. Middlemas. Int. J. Refract. Met. Hard Mater. 75, 170 (2018)
  17. C. Gupta, J.K. Chakravarty. Phys. Status Solidi A 206, 4, 685 (2009)
  18. Y.H. Zhang, E. Ma, J. Sun, W.Z. Han. Acta Mater. 264, 119586 (2023)
  19. H. Suzuki. In: Dislocations in Solids/ V. 4 / Ed. F.R.N. Nabarro. North- Holland, Amsterdam (1979). P. 191
  20. P. Haasen. Mechanical Properties of Solid Solutions and Intermetallic Compounds. In: Physical Metallurgy / V. 2 / Eds. R.W. Cahn, P. Haasen. North-Holland, Amsterdam (1983). P. 1341--1409
  21. C. Varvenne, M. Leyson, M. Ghazisaeidi, W.A. Curtin. Acta Mater. 124, 660 (2017)
  22. O.N. Senkov, S. Gorsse, D.B. Miracle. Acta Mater. 175, 394 (2019)
  23. Physics of solid solution strengthening / Ed. E. Collings. Springer Science \& Business Media (2012)
  24. S.I. Rao, E. Antillon, C. Woodward, B. Akdim, T.A. Parthasarathy, O.N. Senkov. Scripta Mater. 165, 103 (2019)
  25. Y. Zhao, J. Marian. Modell. Simul. Mater. Sci. Eng. 26, 4, 045002 (2018)
  26. R. Thomas. Understanding the Mechanics of Natural Ice. MS Thesis. University of Otago, Dunedin, New Zealand (2020)
  27. E.P. George, D. Raabe, R.O. Ritchie. Nature Rev. Mater. 4, 8, 515 (2019)
  28. Y. Tang, R. Wang, B. Xiao, Z. Zhang, S. Li, J. Qiao, P.K. Liaw. Progr. Mater. Sci. 101090 (2023)
  29. X. Zhou, X. Wang, L. Fey, S. He, I. Beyerlein, P. Cao, J. Marian. MRS BULL. 48, 777 (2023)
  30. A.S. Rogachev. Phys. Met. Metallogr. 121, 8, 733 (2020)
  31. H.A. Khater, G. Monnet, D. Terentyev, A. Serra. Int. J. Plast. 62, 34 (2014)
  32. S. Shinzato, M. Wakeda, S. Ogata. Int. J. Plast. 122, 319 (2019)
  33. V. Celli, M. Kabler, T. Ninomiya, R. Thomson. Phys. Rev. 131, 1, 58 (1963)
  34. V.V. Rybin, A.N. Orlov. Fiz. Tverd. Tela 11, 11, 3251 (1969). (in Russian)
  35. T. Ninomiya, R. Thomson, F. Garcia-Moliner. J. Appl. Phys. 35, 12, 3607 (1964)
  36. H. Suzuki. Nachrichten der akademie der wissenschaften in Gottingen II Matematisch-Physikalische Klasse. 6, 113 (1971)
  37. B.V. Petukhov. Fiz. Tverd. Tela 13, 5, 1445 (1971). (in Russian)
  38. L.D. Landau, E.M. Lifshitz. Statistical Physics. Butterworth-Heinemann (1980)
  39. J.P. Bouchaud, A. Comtet, A. Georges, P. Le Doussal. Ann. Phys. (N.Y.) 201, 2, 285 (1990)
  40. E. Antillon, C. Woodward, S.I. Rao, B. Akdim. Acta Mater. 215, 117012 (2021)
  41. F. Maresca, W.A. Curtin. Acta Mater. 162, 144 (2020). https://doi.org/10.1016/j.actamat.2019.10.007
  42. A. Ghafarollahi, W. Curtin. Acta Mater. 215, 6, 117078 (2021). https://doi.org/j.actamat.2921.117078
  43. S. Chadrasekhar. Stochastic Problems in Physics and Astronomy. American Physical Society (1943)
  44. B.V. Petukhov. Phys. Solid State, 58, 4, 695 (2016)
  45. R.M. Cooke, D. Nieboer, J. Misiewicz. Fat-Tailed Distributions: Data, Diagnostics and Dependence. 1. John Wiley \& Sons (2014)
  46. V.M. Vinokur. J. Physique 47, 9, 1425 (1986)
  47. J.P. Bouchaud, A. Georges. Phys. Rep. 195, 4--5, 127 (1990)
  48. S.N. Majumdar, A. Pal, G. Schehr. Phys. Rep. 840, 1 (2020). https://www.elsevier.com/open-access/userlicense/1.0/
  49. Ya.G. Sinai. Theory Probab. Its Appl. 27, 2, 256 (1982)
  50. V.V. Uchaikin, V.M. Zolotarev. CHANCE and STABILITY. Stable Distributions and their Applications. VSP, Moscow (1999). 570 p
  51. V.V. Uchaikin. Phys.-Usp. 46, 8, 821 (2003)
  52. S.I. Resnick. Heavy Tail Phenomena: Probabilistic and Statistical Modeling. N.Y. Springer Science-Business Media (2007)
  53. B.D. Huges. Random Walks and Random Environment. Cambridge University Press (1995)
  54. B.V. Gnedenko, A.N. Kolmogorov. Predel'nye teoremy dlya summ nezavisimykh sluchainykh velichin. Gos. Izd. Tekh.-Teor. Lit. (1949). (in Russian)
  55. B.V. Petukhov. Fiz. Tverd. Tela 30, 10, 2893 (1988). (in Russian)
  56. J.P. Bouchaud, A. Georges. Comments Condens. Mater. Phys. 15, 3, 125 (1991)
  57. Yu.L. Iunin, V.I. Nikitenko, V.I. Orlov, B.V. Petukhov. Phys. Rev. Lett. 78, 16, 3137 (1997). https://doi.org/10.1103/PhysRevLett.78.3137
  58. B.V. Petukhov. In: Challenges and Advances in Chemical Science / Eds. P.K. Bhowmik. 4, 102 (2021). doi.org/10.9734/bpi/cacs/v4/2371F
  59. B.V. Petukhov. Phys. Solid State 64, 12, 1939 (2022)
  60. B.V. Petukhov. Phys. Rev. E 77, 02660 (2008).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru