Kuritsyn D. I.1, Antonov A. V.1, Morozov S. V.1, Anfertev V. A.1, Chernyaeva M.B.1, Vaks V. L.1, Dudelev V. V.2, Mikailov D. A.2, Chistyakov D. V. 2, Deryagin N.G.2, Slipchenko S. O.2, Lyutetskii A. V.2, Gladyshev A. G.3, Babichev A. V.4, Karachinsky L. Ya.4, Novikov I. I.4, Pikhtin N. A.2, Egorov A. Yu.5, Sokolovskii G. S.2, Gavrilenko V. I.1
1Institute for Physics of Microstructures, Russian Academy of Sciences, Nizhny Novgorod, Russia
2Ioffe Institute, St. Petersburg, Russia
3Connector Optics LLC, St. Petersburg, Russia
4ITMO University, St. Petersburg, Russia
5Alferov Federal State Budgetary Institution of Higher Education and Science Saint Petersburg National Research Academic University of the Russian Academy of Sciences, St. Petersburg, Russia
Email: gavr@ipmras.ru
The frequency tuning of a pulsed single-frequency quantum cascade laser with U-shaped cavity was studied when the temperature varied from 300 to 10 K in the wavelength range 7.7-7.5 μm, amounting to about 35 cm-1. The tuning of the laser frequency Δν~ 1 cm-1 was demonstrated in a time of about 50 ns during a laser power pulse. When the laser radiation frequency was swept during a pulse at room temperature, an absorption line of water vapor in the atmosphere was observed at a frequency of 1296.7 cm-1. Keywords: quantum cascade laser, U-shaped cavity, frequency tuning, water vapor absorption.
- T. Kruczek, K.A. Fedorova, G.S. Sokolovskii, R. Teissier, A.N. Baranov, E.U. Rafailov, Appl. Phys. Lett., 102, 011124 (2013). DOI: 10.1063/1.4774088
- D.H. Wu, M. Razeghi, APL Mater., 5, 035505 (2017). DOI: 10.1063/1.4978810
- J. Semmel, L. Nahle, S. Hofling, A. Forchel, Appl. Phys. Lett., 91, 071104 (2007). DOI: 10.1063/1.2771054
- Y. Wakayama, S. Iwamoto, Y. Arakawa, Appl. Phys. Lett., 96, 171104 (2010). DOI: 10.1063/1.3413949
- P.Q. Liu, X. Wang, C.F. Gmachl, Appl. Phys. Lett., 101, 161115 (2012). DOI: 10.1063/1.4761247
- P.Q. Liu, X. Wang, J.-Y. Fan, C.F. Gmachl, Appl. Phys. Lett., 98, 061110 (2011). DOI: 10.1063/1.3554757
- A.V. Babichev, A.G. Gladyshev, A.S. Kurochkin, V.V. Dudelev, E.S. Kolodeznyi, G.S. Sokolovskii, V.E. Bugrov, L.Ya. Karachinsky, I.I. Novikov, D.V. Denisov, A.S. Ionov, S.O. Slipchenko, A.V. Lyutetskii, N.A. Pikhtin, A.Yu. Egorov, Tech. Phys. Lett., 45, 398 (2019). DOI: 10.1134/S1063785019040205
- V.V. Dudelev, D.A. Mikhailov, A.V. Babichev, S.N. Losev, E.A. Kognovitskaya, A.V. Lyutetskii, S.O. Slipchenko, N.A. Pikhtin, A.G. Gladyshev, D.V. Denisov, I.I. Novikov, L.Ya. Karachinsky, V.I. Kuchinskii, A.Yu. Egorov, G.S. Sokolovskii, Tech. Phys., 65, 1281 (2020). DOI: 10.1134/S106378422008006X
- A.V. Babichev, A.G. Gladyshev, A.V. Filimonov, V.N. Nevedomskii, A.S. Kurochkin, E.S. Kolodeznyi, G.S. Sokolovskii, V.E. Bugrov, L.Ya. Karachinsky, I.I. Novikov, A. Bousseksou, A.Yu. Egorov, Tech. Phys. Lett., 43, 666 (2017). DOI: 10.1134/S1063785017070173
- A.V. Babichev, A.G. Gladyshev, A.S. Kurochkin, E.S. Kolodeznyi, G.S. Sokolovskii, V.E. Bougrov, L.Ya. Karachinsky, I.I. Novikov, A.G. Bousseksou, A.Yu. Egorov, Semiconductors, 52, 1082 (2018). DOI: 10.1134/S1063782618080031
- C. Gmachl, A. Tredicucci, F. Capasso, A.L. Hutchinson, D.L. Sivco, J.N. Baillargeon, A.Y. Cho, Appl. Phys. Lett., 72, 3130 (1998). DOI: 10.1063/1.121569
- C. Sirtori, J. Faist, F. Capasso, D.L. Sivco, A.L. Hutchinson, A.L. Cho, Appl. Phys. Lett., 66, 3242 (1995). DOI: 10.1063/1.113391
- A.A. Lastovkin, A.V. Ikonnikov, V.I. Gavrilenko, A.V. Antonov, Yu.G. Sadof'ev, Radiophys. Quantum. Electron., 54, 609 (2012). DOI: 10.1007/s11141-012-9320-1
- A.N. Pikhtin, A.D. Yas'kov, Fiz. Tekh. Poluprovodn., 22 (6), 969 (1988) (in Russian)
- G. Guelachvili, J. Opt. Soc. Am., 73, 137 (1983). DOI: 10.1364/JOSA.73.000137
- S.N. Mikhailenko, Yu.L. Babikov, V.F. Golovko, Atmos. Oceanic Opt., 18 (09), 685 (2005).
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.