Direct calculation of transition matrix elements in relativistic coupled cluster theory
Oleynichenko A. V.
1,2, Zaitsevskii A.1,3, Kondratyev S. V.3, Eliav E.4
1Konstantinov Petersburg Nuclear Physics Institute, National Research Center Kurchatov Institute, Gatchina, Russia
2Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region, Russia
3Lomonosov Moscow State University, Moscow, Russia
4Tel-Aviv University, Tel-Aviv, Israel
Email: oleynichenko_av@pnpi.nrcki.ru, zaitsevskii_av@pnpi.nrcki.ru, icewolfer193@gmail.com, ephraim@tauex.tau.ac.il
A procedure for calculating transition matrix elements of one-electron property operators in many-electron systems within the relativistic Fock space coupled cluster theory is implemented. The procedure implies constructing an effective property operator accurate up to the second order in cluster amplitudes and ensures connectivity of its diagrammatic representation and exact size-consistency. The results of pilot calculations of electronic transition dipole moments between low-lying states and excited-state radiative lifetimes for Sr and Ra atoms are presented. Keywords: Relativistic coupled cluster theory, transition dipole moments, radiative lifetimes, generalized relativistic pseudopotentials.
- R.F. Garcia Ruiz, R. Berger, J. Billowes, C.L. Binnersley, M.L. Bissell, A.A. Breier, A.J. Brinson, K. Chrysalidis, T.E. Cocolios, B. Cooper, K.T. Flanagan, T.F. Giesen, R.P. de Groote, S. Franchoo, F.P. Gustafsson, T. Isaev, A. Koszorus, G. Neyens, H.A. Perrett, C.M. Ricketts, S. Rothe, L. Schweikhard, A.R. Vernon, K.D.A. Wendt, F. Wienholtz, S.G. Wilkins, X.F. Yang. Nature, 581, 396 (2019). DOI: 10.1038/s41586-020-2299-4
- S.M. Udrescu, A.J. Brinson, R.F. Garcia Ruiz, K. Gaul, R. Berger, J. Billowes, C.L. Binnersley, M.L. Bissell, A.A. Breier, K. Chrysalidis, T.E. Cocolios, B.S. Cooper, K.T. Flanagan, T.F. Giesen, R.P. de Groote, S. Franchoo, F.P. Gustafsson, T.A. Isaev, A. Koszorus, G. Neyens, H.A. Perrett, C.M. Ricketts, S. Rothe, A.R. Vernon, K.D.A. Wendt, F. Wienholtz, S.G. Wilkins, X.F. Yang. Phys. Rev. Lett., 127, 033001 (2021). DOI: 10.1103/PhysRevLett.127.033001
- M.G. Kozlov, L.N. Labzowsky. J. Phys. B: At. Mol. Opt. Phys., 28, 1933 (1995). DOI: 10.1088/0953-4075/28/10/008
- M.S. Safronova, D. Budker, D. DeMille, D.F.J. Kimball, A. Derevianko, C.W. Clark. Rev. Mod. Phys., 90, 025008 (2018), DOI: 10.1103/RevModPhys.90.025008
- L.V. Skripnikov, N.S. Mosyagin, A.V. Titov, V.V. Flambaum, Phys. Chem. Chem. Phys., 22, 18374 (2020). DOI: 10.1039/D0CP01989E
- E. Eliav, A. Borschevsky, A. Zaitsevskii, A.V. Oleynichenko, U. Kaldor. Relativistic Fock-space coupled cluster method: theory and recent applications, in Reference Module in Chemistry, Molecular Sciences and Chemical Engineering (Elsevier, Amsterdam, 2022). DOI: 10.1016/B978-0-12-821978-2.00042-8
- K.R. Shamasundar, S. Asokan, S. Pal. J. Chem. Phys., 120, 6381 (2004). DOI: 10.1063/1.1652436
- J. Gupta, N. Vaval, S. Pal. J. Chem. Phys., 139, 074108 (2013). DOI: 10.1063/1.4817943
- D. Bhattacharya, N. Vaval, S. Pal. J. Chem. Phys., 138, 094108 (2013). DOI: 10.1063/1.4793277
- A.V. Zaitsevskii, L.V. Skripnikov, A.V. Kudrin, A.V. Oleinichenko, E. Eliav, A.V. Stolyarov. Opt. Spectrosc., 124, 451 (2018). DOI: 10.1134/s0030400x18040215
- A.V. Oleynichenko, L. Skripnikov, A. Zaitsevskii, E. Eliav, V.M. Shabaev. Chem. Phys. Lett.. 756, 137825 (2020). DOI: 10.1016/j.cplett.2020.137825
- A. Zaitsevskii, A.V. Oleynichenko, E. Eliav. Symmetry, 12, 1845 (2020). DOI: 10.3390/sym12111845
- A. Zaitsevskii, A.P. Pychtchev. Eur. Phys. J. D, 4, 303 (1998). DOI: 10.1007/s100530050213
- S.A. Blundell, W.R. Johnson, J. Sapirstein, Phys. Rev. A, 43, 3407 (1991). DOI: 10.1103/physreva.43.3407
- M.S. Safronova, W.R. Johnson, A. Derevianko, Phys. Rev. A 60, 4476 (1999). DOI: 10.1103/PhysRevA.60.4476
- G. Gopakumar, H. Merlitz, R.K. Chaudhuri, B.P. Das, U.S. Mahapatra, D. Mukherjee. Phys. Rev. A, 66, 032505 (2002). DOI: 10.1103/physreva.66.032505
- B.K. Sahoo, S. Majumder, H. Merlitz, R. Chaudhuri, B.P. Das, D. Mukherjee. J. Phys. B: At. Mol. Opt. Phys., 39, 355 (2005). DOI: 10.1088/0953-4075/39/2/010
- S.G. Porsev, A. Derevianko. Phys. Rev. A, 73, 012501 (2006). DOI: 10.1103/physreva.73.012501
- U.I. Safronova, M.S. Safronova, W.R. Johnson. Phys. Rev. A, 95, 042507 (2017). DOI: 10.1103/physreva.95.042507
- H.B. Tran Tan, A. Derevianko. Phys. Rev. A, 107, 042809 (2023). DOI: 10.1103/PhysRevA.107.042809
- A.V. Zaitsevskii, A.V. Oleynichenko, E. Eliav. Mol. Phys., e2236246 (2023). DOI: 10.1080/00268976.2023.2236246
- A. Zaitsevskii, N.S. Mosyagin, A.V. Oleynichenko, E. Eliav. Int. J. Quantum Chem. 123, e27077 (2022). DOI: 10.1002/qua.27077
- V.A. Dzuba, V.V. Flambaum, J.S.M. Ginges, Phys. Rev. A, 61, 062509 (2000). DOI: 10.1103/physreva.61.062509
- P. Mandal, A. Sen, M. Mukherjee. Hyperfine Interact., 196, 261 (2010). DOI: 10.1007/s10751-010-0169-4
- M. Fan, C.A. Holliman, A.L. Wang, A.M. Jayich. Phys. Rev. Lett. 122, 223001 (2019). DOI: 10.1103/PhysRevLett.122.223001
- U. Kaldor. Theor. Chim. Acta, 80, 427 (1991). DOI: 10.1007/bf01119664
- L. Visscher, E. Eliav, U. Kaldor. J. Chem. Phys., 115, 9720 (2001). DOI: 10.1063/1.1415746
- M. Musia, A. Perera, R.J. Bartlett. J. Chem. Phys. 134, 114108 (2011). DOI: 10.1063/1.3567115
- V. Hurtubise, K.F. Freed. in Advances in Chemical Physics, Vol. 83 (John Wiley \& Sons, 1993) pp. 465-541. DOI: 10.1002/9780470141410.ch6
- A.V. Oleynichenko, A. Zaitsevskii, E. Eliav. in Supercomputing, Vol. 1331, edited by V. Voevodin and S. Sobolev (Springer International Publishing, Cham, 2020) pp. 375-386. DOI: 10.1007/978-3-030-64616-5_33
- A.V. Titov, N.S. Mosyagin. Int. J. Quantum Chem., 71, 359 (1999). DOI: 10.1002/(SICI)1097- 461X(1999)71:5<359::AID-QUA1>3.0.CO;2-U
- N.S. Mosyagin, A.N. Petrov, A.V. Titov, I.I. Tupitsyn, in Recent Advances in the Theory of Chemical and Physical Systems, Vol. 15 (Kluwer Academic Publishers, 2006) pp. 229-251. DOI: 10.1007/1-4020-4528-x_11
- N.S. Mosyagin, A.V. Zaitsevskii, A.V. Titov. Int. J. Quantum Chem., 120, e26076 (2020). DOI: 10.1002/qua.26076
- A.V. Oleynichenko, A. Zaitsevskii, N.S. Mosyagin, A.N. Petrov, E. Eliav, A.V. Titov. Symmetry 15, 197 (2023). DOI: 10.3390/sym15010197
- B.O. Roos, V. Veryazov, P.-O. Widmark. Theor. Chem. Acc., 111, 345 (2003). DOI: 10.1007/s00214-003-0537-0
- DIRAC, a relativistic ab initio electronic structure program, Release DIRAC19 (2019), written by A.S.P. Gomes, T. Saue, L. Visscher, H.J.Aa. Jensen, R. Bast, with contributions from I.A. Aucar, V. Bakken, K.G. Dyall, S. Dubillard, U. Ekstroem, E. Eliav, T. Enevoldsen, E. Fasshauer, T. Fleig, O. Fossgaard, L. Halbert, E.D. Hedegaard, T. Helgaker, J. Henriksson, M. Ilias, Ch.R. Jacob, S. Knecht, S. Komorovsky, O. Kullie, J.K. Laerdahl, C.V. Larsen, Y.S. Lee, H.S. Nataraj, M.K. Nayak, P. Norman, M. Olejniczak, J. Olsen, J.M.H. Olsen, Y.C. Park, J.K. Pedersen, M. Pernpointner, R. Di Remigio, K. Ruud, P. Salek, B. Schimmelpfennig, B. Senjean, A. Shee, J. Sikkema, A.J. Thorvaldsen, J. Thyssen, J. van Stralen, M.L. Vidal, S. Villaume, O. Visser, T. Winther, S. Yamamoto (see http://diracprogram.org). (accessed on 26 April 2023)
- T. Saue, R. Bast, A.S.P. Gomes, H.J.A. Jensen, L. Visscher, I.A. Aucar, R. Di Remigio, K.G. Dyall, E. Eliav, E. Fasshauer, T. Fleig, L. Halbert, E.D. Hedegard, B. Helmich-Paris, M. Iliavs, C.R. Jacob, S. Knecht, J.K. Laerdahl, M.L. Vidal, M.K. Nayak, M. Olejniczak, J.M.H. Olsen, M. Pernpointner, B. Senjean, A. Shee, A. Sunaga, J.N.P. van Stralen. J. Chem. Phys., 152, 204104 (2020). DOI: 10.1063/5.0004844
- J.E. Sansonetti, W.C. Martin. J. Phys. Chem. Ref. Data, 34, 1559 (2005). DOI: 10.1063/1.1800011
- M.S. Safronova, M.G. Kozlov, W.R. Johnson, D. Jiang. Phys. Rev. A, 80, 012516 (2009). DOI: 10.1103/physreva.80.012516
- M.S. Safronova, S.G. Porsev, U.I. Safronova, M.G. Kozlov, C.W. Clark. Phys. Rev. A, 87, 012509 (2013). DOI: 10.1103/physreva.87.012509
- V.A. Dzuba, J.S.M. Ginges. Phys. Rev. A, 73, 032503 (2006). DOI: 10.1103/physreva.73.032503
- R. Drozdowski, M. Ignaciuk, J. Kwela, J. Heldt. Z. Phys. D Atom Mol. Cl., 41, 125 (1997). DOI: 10.1007/s004600050300
- N.D. Scielzo, J.R. Guest, E.C. Schulte, I. Ahmad, K. Bailey, D.L. Bowers, R.J. Holt, Z.-T. Lu, T.P. O'Connor, D.H. Potterveld. Phys. Rev. A, 73, (2006). DOI: 10.1103/physreva.73.010501
- T.L. Nicholson, S.L. Campbell, R.B. Hutson, G.E. Marti, B.J. Bloom, R.L. McNally, W. Zhang, M.D. Barrett, M.S. Safronova, G.F. Strouse, W.L. Tew, J. Ye. Nat. Commun., 6, 6896 (2015). DOI: 10.1038/ncomms7896
- J.R. Guest, N.D. Scielzo, I. Ahmad, K. Bailey, J.P. Greene, R.J. Holt, Z.-T. Lu, T.P. O'Connor, D.H. Potterveld. Phys. Rev. Lett., 98, 093001 (2007). DOI: 10.1103/PhysRevLett.98.093001
- D. Husain, G. Roberts. Chem. Phys., 127, 203 (1988). DOI: 10.1016/0301-0104(88)87119-2
- W.L. Trimble, I.A. Sulai, I. Ahmad, K. Bailey, B. Graner, J.P. Greene, R.J. Holt, W. Korsch, Z.-T. Lu, P. Mueller, T.P. O'Connor, Phys. Rev. A, 80, 054501 (2009). DOI: 10.1103/physreva.80.054501
- M. Yasuda, T. Kishimoto, M. Takamoto, H. Katori, Phys. Rev. A, 73, 011403(R) (2006). DOI: 10.1103/physreva.73.011403
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.