Theoretical analysis of a gyrotron driven by an external harmonic signal
Grigorieva N.V. 1,2, Rozhnev A.G. 1,2, Ryskin N.M. 1,2
1Saratov Branch, Kotel’nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Saratov, Russia
2Saratov State University, Saratov, Russia
Email: preobnv@gmail.com

PDF
In this paper, synchronization of a gyrotron by an external harmonic signal is analyzed based on a model with the Gaussian fixed structure of a high-frequency field using preliminary calculated complex gain factor. Stability conditions of the synchronization regimes with variation of beam current and cyclotron resonance mismatch are analyzed at different values of the driving amplitude. The dependences of the transversal efficiency (i.e., the portion of transverse energy given by electrons to the field) on these parameters are plotted. Optimal parameter values have been found at which, in the synchronization regime, an efficiency close to the maximal for an autonomous gyrotron is achieved, and a wide synchronization band is also ensured. Keywords: gyrotron, synchronization, injection locking, bifurcation.
  1. M. Thumm. J. Infrared Millim., Terahertz Waves, 41, 1 (2020). DOI: 10.1007/s10762-019-00631-y
  2. M.K.A. Thumm, G.G. Denisov, K. Sakamoto, M.Q. Tran. Nucl. Fusion, 59, 073001 (2019). DOI: 10.1088/1741-4326/ab2005
  3. A.G. Litvak, G.G. Denisov, M.Y. Glyavin. IEEE J. Microw., 1, 260 (2021). DOI: 10.1109/JMW.2020.3030917
  4. R. Ikeda, K. Kajiwara, T. Nakai, T. Ohgo, S. Yajima, T. Shinya, Y. Mitsunaka, Y. Oda, T. Kobayashi, K. Takahashi, S. Moriyama, T. Eguchi, K. Sakamoto. Nucl. Fusion, 61, 106031 (2021). DOI: 10.1088/1741-4326/ac21f7
  5. T. Rzesnicki, Z.C. Ioannidis, K.A. Avramidis, I. Chelis, G. Gantenbein, J.-P. Hogge, S. Illy, J. Jelonnek, J. Jin, A. Leggieri, F. Legrand, I.Gr. Pagonakis, F. Sanchez, M. Thumm. IEEE Electron Device Lett., 43, 623 (2022). DOI: 10.1109/LED.2022.3152184
  6. G.G. Denisov, A.N. Kuftin, V.N. Manuilov, N.A. Zavolsky, A.V. Chirkov, E.A. Soluyanova, E.M. Tai, M.I. Bakulin, A.I. Tsvetkov, A.P. Fokin, Y.V. Novozhilova, B.Z. Movshevich, M.Yu. Glyavin. Microwave Opt. Technol. Lett., 62, 2137 (2020). DOI: 10.1002/mop.32330
  7. G. Denisov, A. Kuftin, V. Manuilov, A. Chirkov, L. Popov, V. Zapevalov, A. Zuev, A. Sedov, I. Zheleznov, M. Glyavin. Nucl. Fusion, 62, 036020 (2022). DOI: 10.1088/1741-4326/ac4946
  8. A.V. Chirkov, G.G. Denisov, A.N. Kuftin. Appl. Phys. Lett., 106, 263501 (2015). DOI: 10.1063/1.4923269
  9. V.L. Bakunin, Yu.M. Guznov, G.G. Denisov, N.I. Zaitsev, S.A. Zapevalov, A.N. Kuftin, Yu.V. Novozhilova, A.P. Fokin, A.V. Chirkov, A.S. Shevchenko. Radiophys. Quant. Electron., 62, 481 (2019). DOI: 10.1007/s11141-020-09994-y
  10. A.N. Kuftin, G.G. Denisov, A.V. Chirkov, M.Yu. Shmelev, V.I. Belousov, A.A. Ananichev, B.Z. Movshevich, I.V. Zotova, M.Yu. Glyavin. IEEE Electron Device Lett., 44, 1563 (2023). DOI: 10.1109/LED.2023.3294755
  11. I.G. Zarnitsyna, G.S. Nusinovich. Radiophys. Quant. Electron., 18, 339 (1975). DOI: 10.1007/BF01036701
  12. V.S. Ergakov, M.A. Moiseev, V.I. Khizhnyak. Radiotekhnika i elektronika, 23, 2591 (1978) (in Russian)
  13. A.W. Fliflet, W.M. Manheimer. Phys. Rev. A, 39, 3432 (1989). DOI: 10.1103/PhysRevA.39.3432
  14. A.H. McCurdy, A.K. Ganguly, C.M. Armstrong. Phys. Rev. A, 40, 1402 (1989). DOI: 10.1103/ PhysRevA.40.1402
  15. P.E. Latham, B. Levush, G.S. Nusinovich, S. Parikh. IEEE Trans. Plasma Sci., 22, 818 (1994). DOI: 10.1109/27.338297
  16. N.S. Ginzburg, A.S. Sergeev, I.V. Zotova. Phys. Plasmas, 22, 033101 (2015). DOI: 10.1063/1.4913672
  17. V.L. Bakunin, G.G. Denisov, Yu.V. Novozhilova. Tech. Phys. Lett., 40, 382 (2014). DOI: 10.1134/S1063785014050034
  18. V.L. Bakunin, G.G. Denisov, Yu.V. Novozhilova. Radiophys. Quant. Electron., 58, 893 (2016). DOI: 10.1007/s11141-016-9663-0
  19. Yu.V. Novozhilova, G.G. Denisov, M.Yu. Glyavin, N.M. Ryskin, V.L. Bakunin, A.A. Bogdashov, M.M. Melnikova, A.P. Fokin. Izv. vuzov. Prikladnaya nelineynaya dinamika, 25 (1), 4 (2017) (in Russian). DOI: 10.18500/0869-6632-2018-26-6--68-81
  20. V.L. Bakunin, G.G. Denisov, Y.V. Novozhilova. IEEE Electron Device Lett., 41, 777 (2020). DOI: 10.1109/LED.2020.2980218
  21. G.S. Nusinovich. Introduction to the Physics of Gyrotrons (The Johns Hopkins University Press, Baltimore, London, 2004)
  22. A.B. Adilova, N.M. Ryskin. Radiophys. Quant. Electron., 63, 703 (2021). DOI: 10.1007/s11141-021-10091-x
  23. A.B. Adilova, N.M. Ryskin. Electronics, 11, 811 (2022). DOI: 10.3390/electronics11050811
  24. N.V. Grigorieva. Izv. vuzov. Prikladnaya nelineynaya dinamika, 29, 905 (2021) (in Russian). DOI: 10.18500/0869-6632-2021-29-6-905-914
  25. N.V. Grigorieva, N.M. Ryskin. Radiophys. Quant. Electron., 65, 371 (2022). DOI: 10.52452/00213462_2022_65_05_406
  26. P.S. Landa. Avtokolebaniya v sistemakh s konechnym chislom stepeney svobody (Nauka, M., 2019) (in Russian)
  27. A.P. Kuznetsov, S.P. Kuznetsov, N.M. Ryskin. Nelinejnye kolebaniya (URSS, M., 2020)
  28. K.A. Yakunina, A.P. Kuznetsov, N.M. Ryskin. Phys. Plasmas, 22, 113107 (2015). DOI: 10.1063/1.4935847
  29. A.B. Adilova, N.V.Grigoryeva, A.G. Rozhnev, N.M. Ryskin. Radiophys. Quant. Electron., 66, 143 (2023). DOI: 10.1007/s11141-023-10282-8

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru