Molecular modeling and OCT monitoring of optical clearing of human skin
Berezin K. V.
1, Grabarchuk E.V.
2, Lichter A. M.
2, Dvoretski K. N.
3, Surkov Yu.I.
1,4, Tuchin V. V.
1,41Department of Physics, Saratov State University, Saratov, Russia
2 Astrakhan Tatishchev State University, Astrakhan, Russia
3Saratov State Medical University named after V. I. Razumovsky, Saratov, Russia
4Science Medical Center, Saratov State University, Saratov. Russia
Email: berezinkv@yandex.ru, likhter@bk.ru, dcn@yandex.ru, surkov9898@gmail.com, tuchinvv@mail.ru
Using an optical coherence tomograph, the results of immersion optical clearing of human skin in vivo using an aqueous solution of glucosamine hydrochloride as a clearing agent were obtained. To assess the effectiveness of optical clearing, we determined the rate of decrease in the light scattering coefficient obtained using an averaged A-scan - a tomograph image in the dermis at a depth of 350 to 700 μm. Complex molecular modeling was carried out, which includes methods of classical molecular dynamics and methods of quantum chemistry HF/STO3G/DFT/B3LYP/6-311G(d) of intermolecular interaction of a number of clearing agents related to amino and imino sugars (glucosamine, galactosamine, 1-deoxynojirimycin) with fragment of collagen peptide (GPH)3. Correlations have been established between the efficiency of optical clearing and such theoretical parameters as the average number of hydrogen bonds formed between clearing agents and a fragment of collagen peptide (GPH)3 and the energy of intermolecular interaction of clearing agents with the same peptide. Using the constructed correlation, the optical clearing efficiency values for the molecules of glucosamine, galactosamine and 1-deoxynojirimycin were predicted. Keywords: molecular modeling, optical clearing of human skin, hydrogen bonds, molecular dynamics, quantum chemistry, amino sugars.
- V.V. Tuchin. Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnostics, 3rd ed. (PM 254, SPIE Press, Bellingham, WA, 2015), p. 988
- H. Jonasson, I. Fredriksson, S. Bergstrand, C.J. Ostgren, M. Larsson, T. Stromberg. J. Biomed. Opt., 23 (12), 121608 (2018). DOI: 10.1117/1.JBO.23.12.121608
- V.V. Tuchin, D. Zhu, E.A. Genina (eds.) Handbook of Tissue Optical Clearing: New Prospects in Optical Imaging (Taylor \& Francis Group LLC, CRC Press, Boca Raton, FL, 2022), p. 688
- J.M. Hirshburg. Chemical Agent Induced Reduction of Skin Light Scattering: Doctoral Dissertation (Texas A\&M University, 2009), p. 119
- D. Zhu, K.V. Larin, Q. Luo, V.V. Tuchin. Laser Photon. Rev., 7 (5), 732 (2013). DOI: 10.1002/lpor.201200056
- A.N. Bashkatov, K.V. Berezin, K.N. Dvoretskiy, M.L. Chernavina, E.A. Genina, V.D. Genin, V.I. Kochubey, E.N. Lazareva, A.B. Pravdin, M.E. Shvachkina, P.A. Timoshina, D.K. Tuchina, D.D. Yakovlev, D.A. Yakovlev, I.Yu. Yanina, O.S. Zhernovaya, V.V. Tuchin. J. Biomed. Opt., 23 (9), 091416 (2018). DOI: 10.1117/1.JBO.23.9.091416
- L. Oliveira, V.V. Tuchin. The Optical Clearing Method: A New Tool for Clinical Practice and Biomedical Engineering (Springer Nature Switzerland AG, Basel, 2019), p. 188. DOI: 10.1007/978-3-030-33055-2
- I. Costantini, R. Cicchi, L. Silvestri, F. Vanzi, F.S. Pavone. Biomed. Optics Express, 10 (10), 5251 (2019). DOI: 10.1364/boe.10.005251
- P. Matryba, L. Kaczmarek, J. Goab. Laser Photon. Rev., 13 (8), 1800292 (2019). DOI: 10.1002/lpor.201800292
- T. Yu, J. Zhu, D. Li, D. Zhu. Science, 24 (3), 102178 (2021). DOI: 10.1016/j.isci.2021.102178
- I.S. Martins, H.F. Silva, E.N. Lazareva, N.V. Chernomyrdin, K.I. Zaytsev, L.M. Oliveira, V.V. Tuchin. Biomed. Optics Express, 14 (1), 249 (2023). DOI: 10.1364/BOE.479320
- E.C. Cheshire, R.D.G. Malcomson, S. Joseph, A. Adnan, D. Adlam, G.N. Rutty. Int. J. Legal Med., 131, 1377 (2017). https://doi.org/10.1007/s00414-017-1570-1
- T. Yu, J. Zhu, Y. Li, Y. Ma, J. Wang, X. Cheng, S. Jin, Q. Sun, X. Li, H. Gong, Q. Luo, F. Xu, S. Zhao, D. Zhu. Sci. Rep., 8, 1964 (2018). DOI: 10.1038/s41598-018-20306-3
- X. Wen, S.L. Jacques, V.V. Tuchin, D. Zhu. J. Biomed. Opt., 17 (6), 066022 (2012). DOI: 10.1117/1.JBO.17.6.066022
- A.N. Bashkatov, E.A. Genina, V.V. Tuchin. In: Handbook of Optical Sensing of Glucose in Biological Fluids and Tissues, ed. by V.V. Tuchin (Taylor \& Francis Group LLC, CRC Press, 2009), p. 587
- K.V. Larin, V.V. Tuchin. Quant. Electron., 38 (6), 551 (2008). DOI: 10.1070/QE2008v038n06ABEH013850
- D.K. Tuchina, R. Shi, A.N. Bashkatov, E.A. Genina, D. Zhu, Q. Luo, V.V. Tuchin. J. Biophotonics, 8 (4), 332 (2015). DOI: 10.1002/jbio.201400138
- V. Hovhannisyan, P.-S. Hu, S.-J. Chen, C.-S. Kim, C.-Y. Dong. J. Biomed. Opt., 18 (4), 046004 (2013). DOI: 10.1117/1.JBO.18.4.046004
- A.Yu. Sdobnov, M.E. Darvin, E.A. Genina, A.N. Bashkatov, J. Lademann, V.V. Tuchin. Spectrochimi. Acta Part A: Molecular and Biomolecular Spectroscopy, 197, 216 (2018). DOI: 10.1016/j.saa.2018.01.085
- T. Yu, X. Wen, V.V. Tuchin, Q. Luo, D. Zhu. J. Biomed. Opt., 16 (9), 095002 (2011). DOI: 10.1117/1.3621515
- A.T. Yeh, B. Choi, J.S. Nelson, B.J. Tromberg. J. Investigative Dermatology, 121 (6), 1332 (2003). DOI:10.1046/j.1523-1747.2003.12634.x
- X. Wen, Z. Mao, Z. Han, V.V. Tuchin, D. Zhu. J. Biophoton., 3 (1-2), 44 (2010). DOI: 10.1002/jbio.200910080
- A.Yu. Sdobnov, M.E. Darvin, J. Schleusener, J. Lademann, V.V. Tuchin. J. Biophoton., 12 (5), e201800283 (2019). DOI: 10.1002/jbio.201800283
- K.V. Berezin, K.N. Dvoretski, M.L. Chernavina, A.M. Likhter, V.V. Smirnov, I.T. Shagautdinova, E.M. Antonova, E.Yu. Stepanovich, E.A. Dzhalmuhambetova, V.V. Tuchin. J. Mol. Modeling., 24 (2), 45 (2018). DOI: 10.1007/s00894-018-3584-0
- K.V. Berezin, E.V. Grabarchuk, A.M. Likhter, K.N. Dvoretskiy, V.V. Tuchin. J. Biophoton., e202300354 (2023). DOI: 10.1002/jbio.202300354
- K.V. Berezin, K.N. Dvoretskii, V.V. Nechaev, A.V. Novoselova, A.M. Likhter, I.T. Shagautdinova, E.V. Grabarchuk, V.V. Tuchin. Opt. Spectr., 129 (7), 763 (2021). DOI: 10.1134/S0030400X21060035
- K.V. Berezin, K.N. Dvoretskii, M.L. Chernavina, V.V. Nechaev, A.M. Likhter, I.T. Shagautdinova, E.M. Antonova, V.V. Tuchin. Opt. Spectr., 127 (2), 352 (2019). DOI: 10.1134/S0030400X19080071
- W.W. Pigman, D. Horton, J.D. Wander. The Carbohydrates (Academic Press., NY., 1980), p. 727--728. ISBN: 9780125563512
- MedlinePlus, US National Library of Medicine. https://medlineplus.gov/druginfo/natural/807.html
- The DailyMed database [Electronic resource]. URL: https://dailymed.nlm.nih.gov/dailymed/fda/fdaDrugXsl.cfm? setid=442aed6e-6242-4a96-90aa-d988b62d55e8\&type= display
- D.J. Faber, F.J. van der Meer, M.C.G. Aalders, T.G. van Leeuwen. Opt. Express, 12 (19), 4353 (2004). DOI: 10.1364/OPEX.12.004353
- P. Lee, W. Gao, X. Zhang. Appl. Opt., 49 (18), 3538 (2010). DOI: 10.1364/AO.49.003538
- E.A. Genina, A.N. Bashkatov, E.A. Kolesnikova, M.V. Basko, G.S. Terentyuk, V.V. Tuchin. J. Biomed. Opt., 19 (2), 021109 (2014). DOI: 10.1117/1.JBO.19.2.021109
- R.K. Wang, V.V. Tuchin. in: Handbook of Coherent-Domain Optical Methods. Biomedical Diagnostics, Environmental Monitoring, and Material Science. V. 2, 2nd edition, ed. by V.V. Tuchin (Heidelberg, Berlin, Springer-Verlag, NY., 2013), v. 2, p. 665
- E.A. Genina, N.S. Ksenofontova, A.N. Bashkatov, G.S. Terentyuk, V.V. Tuchin. Quant. Electron., 47 (6), 561 (2017). DOI: 10.1070/QEL16378
- K. Okuyama, K. Miyama, K. Mizuno, H.P. Bachinger. Biopolymers, 97 (8), 607 (2012). DOI: 10.1002/bip.22048
- W.D. Cornell, P. Cieplak, C.I. Bayly, I.R. Gould, K.M.Jr. Merz, D.M. Ferguson, D.C. Spellmeyer, T. Fox, J.W. Caldwell, P.A. Kollman. J. Am. Chem. Soc., 117 (19), 5179 (1995). DOI: 10.1021/ja00124a002
- A.D. Becke. J. Chem. Phys., 98 (7), 5648 (1993). DOI: 10.1063/1.464913
- C. Lee, W. Yang, R.G. Parr. Phys. Rev., 37B (2), 785 (1988). DOI: 10.1103/PhysRevB.37.785
- M.J. Frisch, G.W. Trucks, H.B. Schlegel et al. Gaussian09, Revision A.02. (Gaussian, Inc., Pittsburgh PA, 2009)
- D. Vander Spoel, E. Lindahl, B. Hess, G. Groenhof, E.A. Mark, H.J.C. Berendsen, J. Comput. Chem., 26 (16), 1701 (2005). DOI: 10.1002/jcc.20291
- Y. Duan, C. Wu, S. Chowdhury, M.C. Lee, G. Xiong, W. Zhang, R. Yang, P. Cieplak, R. Luo, T. Lee, J. Caldwell, J. Wang, P. Kollman. J. Comp. Chem., 24 (16), 1999 (2003). DOI: 10.1002/jcc.10349
- H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. DiNola, J.R. Haak. J. Chem. Phys., 81 (8), 3884 (1984). DOI: 10.1063/1.448118
- W. Humphrey, A. Dalke, K. Schulten. J. Mol. Graph., 14 (1), 33 (1996). DOI: 10.1016/0263-7855(96)00018-5
- H.D. Loof, L. Nilsson, R. Rigler. J. Am. Chem. Soc., 114 (11), 4028 (1992). DOI: 0.1021/ja00037a002
- C.C.J. Roothaan. Rev. Mod. Phys., 23 (2), 69 (1951). DOI: 10.1103/REVMODPHYS.23.69
- Y. Duan, C. Wu, S. Chowdhury, M.C. Lee, G. Xiong, W. Zhang, R. Yang, P. Cieplak, R. Luo, T. Lee, J. Caldwell, J. Wang, P. Kollman. J. Comp. Chem., 24 (16), 1999 (2003). DOI: 10.1002/jcc.10349
- K.V. Berezin, K.N. Dvoretskiy, V.V. Nechaev, A.M. Likhter, I.T. Shagautdinova, V.V. Tuchin. J. Biomed. Photon. Eng., 6 (2), 20308 (2020). DOI: 10.18287/JBPE20.06.020308
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.