Molecular modeling and OCT monitoring of optical clearing of human skin
Berezin K. V. 1, Grabarchuk E.V. 2, Lichter A. M.2, Dvoretski K. N. 3, Surkov Yu.I. 1,4, Tuchin V. V. 1,4
1Department of Physics, Saratov State University, Saratov, Russia
2 Astrakhan Tatishchev State University, Astrakhan, Russia
3Saratov State Medical University named after V. I. Razumovsky, Saratov, Russia
4Science Medical Center, Saratov State University, Saratov. Russia
Email: berezinkv@yandex.ru, likhter@bk.ru, dcn@yandex.ru, surkov9898@gmail.com, tuchinvv@mail.ru

PDF
Using an optical coherence tomograph, the results of immersion optical clearing of human skin in vivo using an aqueous solution of glucosamine hydrochloride as a clearing agent were obtained. To assess the effectiveness of optical clearing, we determined the rate of decrease in the light scattering coefficient obtained using an averaged A-scan - a tomograph image in the dermis at a depth of 350 to 700 μm. Complex molecular modeling was carried out, which includes methods of classical molecular dynamics and methods of quantum chemistry HF/STO3G/DFT/B3LYP/6-311G(d) of intermolecular interaction of a number of clearing agents related to amino and imino sugars (glucosamine, galactosamine, 1-deoxynojirimycin) with fragment of collagen peptide (GPH)3. Correlations have been established between the efficiency of optical clearing and such theoretical parameters as the average number of hydrogen bonds formed between clearing agents and a fragment of collagen peptide (GPH)3 and the energy of intermolecular interaction of clearing agents with the same peptide. Using the constructed correlation, the optical clearing efficiency values for the molecules of glucosamine, galactosamine and 1-deoxynojirimycin were predicted. Keywords: molecular modeling, optical clearing of human skin, hydrogen bonds, molecular dynamics, quantum chemistry, amino sugars.
  1. V.V. Tuchin. Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnostics, 3rd ed. (PM 254, SPIE Press, Bellingham, WA, 2015), p. 988
  2. H. Jonasson, I. Fredriksson, S. Bergstrand, C.J. Ostgren, M. Larsson, T. Stromberg. J. Biomed. Opt., 23 (12), 121608 (2018). DOI: 10.1117/1.JBO.23.12.121608
  3. V.V. Tuchin, D. Zhu, E.A. Genina (eds.) Handbook of Tissue Optical Clearing: New Prospects in Optical Imaging (Taylor \& Francis Group LLC, CRC Press, Boca Raton, FL, 2022), p. 688
  4. J.M. Hirshburg. Chemical Agent Induced Reduction of Skin Light Scattering: Doctoral Dissertation (Texas A\&M University, 2009), p. 119
  5. D. Zhu, K.V. Larin, Q. Luo, V.V. Tuchin. Laser Photon. Rev., 7 (5), 732 (2013). DOI: 10.1002/lpor.201200056
  6. A.N. Bashkatov, K.V. Berezin, K.N. Dvoretskiy, M.L. Chernavina, E.A. Genina, V.D. Genin, V.I. Kochubey, E.N. Lazareva, A.B. Pravdin, M.E. Shvachkina, P.A. Timoshina, D.K. Tuchina, D.D. Yakovlev, D.A. Yakovlev, I.Yu. Yanina, O.S. Zhernovaya, V.V. Tuchin. J. Biomed. Opt., 23 (9), 091416 (2018). DOI: 10.1117/1.JBO.23.9.091416
  7. L. Oliveira, V.V. Tuchin. The Optical Clearing Method: A New Tool for Clinical Practice and Biomedical Engineering (Springer Nature Switzerland AG, Basel, 2019), p. 188. DOI: 10.1007/978-3-030-33055-2
  8. I. Costantini, R. Cicchi, L. Silvestri, F. Vanzi, F.S. Pavone. Biomed. Optics Express, 10 (10), 5251 (2019). DOI: 10.1364/boe.10.005251
  9. P. Matryba, L. Kaczmarek, J. Goab. Laser Photon. Rev., 13 (8), 1800292 (2019). DOI: 10.1002/lpor.201800292
  10. T. Yu, J. Zhu, D. Li, D. Zhu. Science, 24 (3), 102178 (2021). DOI: 10.1016/j.isci.2021.102178
  11. I.S. Martins, H.F. Silva, E.N. Lazareva, N.V. Chernomyrdin, K.I. Zaytsev, L.M. Oliveira, V.V. Tuchin. Biomed. Optics Express, 14 (1), 249 (2023). DOI: 10.1364/BOE.479320
  12. E.C. Cheshire, R.D.G. Malcomson, S. Joseph, A. Adnan, D. Adlam, G.N. Rutty. Int. J. Legal Med., 131, 1377 (2017). https://doi.org/10.1007/s00414-017-1570-1
  13. T. Yu, J. Zhu, Y. Li, Y. Ma, J. Wang, X. Cheng, S. Jin, Q. Sun, X. Li, H. Gong, Q. Luo, F. Xu, S. Zhao, D. Zhu. Sci. Rep., 8, 1964 (2018). DOI: 10.1038/s41598-018-20306-3
  14. X. Wen, S.L. Jacques, V.V. Tuchin, D. Zhu. J. Biomed. Opt., 17 (6), 066022 (2012). DOI: 10.1117/1.JBO.17.6.066022
  15. A.N. Bashkatov, E.A. Genina, V.V. Tuchin. In: Handbook of Optical Sensing of Glucose in Biological Fluids and Tissues, ed. by V.V. Tuchin (Taylor \& Francis Group LLC, CRC Press, 2009), p. 587
  16. K.V. Larin, V.V. Tuchin. Quant. Electron., 38 (6), 551 (2008). DOI: 10.1070/QE2008v038n06ABEH013850
  17. D.K. Tuchina, R. Shi, A.N. Bashkatov, E.A. Genina, D. Zhu, Q. Luo, V.V. Tuchin. J. Biophotonics, 8 (4), 332 (2015). DOI: 10.1002/jbio.201400138
  18. V. Hovhannisyan, P.-S. Hu, S.-J. Chen, C.-S. Kim, C.-Y. Dong. J. Biomed. Opt., 18 (4), 046004 (2013). DOI: 10.1117/1.JBO.18.4.046004
  19. A.Yu. Sdobnov, M.E. Darvin, E.A. Genina, A.N. Bashkatov, J. Lademann, V.V. Tuchin. Spectrochimi. Acta Part A: Molecular and Biomolecular Spectroscopy, 197, 216 (2018). DOI: 10.1016/j.saa.2018.01.085
  20. T. Yu, X. Wen, V.V. Tuchin, Q. Luo, D. Zhu. J. Biomed. Opt., 16 (9), 095002 (2011). DOI: 10.1117/1.3621515
  21. A.T. Yeh, B. Choi, J.S. Nelson, B.J. Tromberg. J. Investigative Dermatology, 121 (6), 1332 (2003). DOI:10.1046/j.1523-1747.2003.12634.x
  22. X. Wen, Z. Mao, Z. Han, V.V. Tuchin, D. Zhu. J. Biophoton., 3 (1-2), 44 (2010). DOI: 10.1002/jbio.200910080
  23. A.Yu. Sdobnov, M.E. Darvin, J. Schleusener, J. Lademann, V.V. Tuchin. J. Biophoton., 12 (5), e201800283 (2019). DOI: 10.1002/jbio.201800283
  24. K.V. Berezin, K.N. Dvoretski, M.L. Chernavina, A.M. Likhter, V.V. Smirnov, I.T. Shagautdinova, E.M. Antonova, E.Yu. Stepanovich, E.A. Dzhalmuhambetova, V.V. Tuchin. J. Mol. Modeling., 24 (2), 45 (2018). DOI: 10.1007/s00894-018-3584-0
  25. K.V. Berezin, E.V. Grabarchuk, A.M. Likhter, K.N. Dvoretskiy, V.V. Tuchin. J. Biophoton., e202300354 (2023). DOI: 10.1002/jbio.202300354
  26. K.V. Berezin, K.N. Dvoretskii, V.V. Nechaev, A.V. Novoselova, A.M. Likhter, I.T. Shagautdinova, E.V. Grabarchuk, V.V. Tuchin. Opt. Spectr., 129 (7), 763 (2021). DOI: 10.1134/S0030400X21060035
  27. K.V. Berezin, K.N. Dvoretskii, M.L. Chernavina, V.V. Nechaev, A.M. Likhter, I.T. Shagautdinova, E.M. Antonova, V.V. Tuchin. Opt. Spectr., 127 (2), 352 (2019). DOI: 10.1134/S0030400X19080071
  28. W.W. Pigman, D. Horton, J.D. Wander. The Carbohydrates (Academic Press., NY., 1980), p. 727--728. ISBN: 9780125563512
  29. MedlinePlus, US National Library of Medicine. https://medlineplus.gov/druginfo/natural/807.html
  30. The DailyMed database [Electronic resource]. URL: https://dailymed.nlm.nih.gov/dailymed/fda/fdaDrugXsl.cfm? setid=442aed6e-6242-4a96-90aa-d988b62d55e8\&type= display
  31. D.J. Faber, F.J. van der Meer, M.C.G. Aalders, T.G. van Leeuwen. Opt. Express, 12 (19), 4353 (2004). DOI: 10.1364/OPEX.12.004353
  32. P. Lee, W. Gao, X. Zhang. Appl. Opt., 49 (18), 3538 (2010). DOI: 10.1364/AO.49.003538
  33. E.A. Genina, A.N. Bashkatov, E.A. Kolesnikova, M.V. Basko, G.S. Terentyuk, V.V. Tuchin. J. Biomed. Opt., 19 (2), 021109 (2014). DOI: 10.1117/1.JBO.19.2.021109
  34. R.K. Wang, V.V. Tuchin. in: Handbook of Coherent-Domain Optical Methods. Biomedical Diagnostics, Environmental Monitoring, and Material Science. V. 2, 2nd edition, ed. by V.V. Tuchin (Heidelberg, Berlin, Springer-Verlag, NY., 2013), v. 2, p. 665
  35. E.A. Genina, N.S. Ksenofontova, A.N. Bashkatov, G.S. Terentyuk, V.V. Tuchin. Quant. Electron., 47 (6), 561 (2017). DOI: 10.1070/QEL16378
  36. K. Okuyama, K. Miyama, K. Mizuno, H.P. Bachinger. Biopolymers, 97 (8), 607 (2012). DOI: 10.1002/bip.22048
  37. W.D. Cornell, P. Cieplak, C.I. Bayly, I.R. Gould, K.M.Jr. Merz, D.M. Ferguson, D.C. Spellmeyer, T. Fox, J.W. Caldwell, P.A. Kollman. J. Am. Chem. Soc., 117 (19), 5179 (1995). DOI: 10.1021/ja00124a002
  38. A.D. Becke. J. Chem. Phys., 98 (7), 5648 (1993). DOI: 10.1063/1.464913
  39. C. Lee, W. Yang, R.G. Parr. Phys. Rev., 37B (2), 785 (1988). DOI: 10.1103/PhysRevB.37.785
  40. M.J. Frisch, G.W. Trucks, H.B. Schlegel et al. Gaussian09, Revision A.02. (Gaussian, Inc., Pittsburgh PA, 2009)
  41. D. Vander Spoel, E. Lindahl, B. Hess, G. Groenhof, E.A. Mark, H.J.C. Berendsen, J. Comput. Chem., 26 (16), 1701 (2005). DOI: 10.1002/jcc.20291
  42. Y. Duan, C. Wu, S. Chowdhury, M.C. Lee, G. Xiong, W. Zhang, R. Yang, P. Cieplak, R. Luo, T. Lee, J. Caldwell, J. Wang, P. Kollman. J. Comp. Chem., 24 (16), 1999 (2003). DOI: 10.1002/jcc.10349
  43. H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. DiNola, J.R. Haak. J. Chem. Phys., 81 (8), 3884 (1984). DOI: 10.1063/1.448118
  44. W. Humphrey, A. Dalke, K. Schulten. J. Mol. Graph., 14 (1), 33 (1996). DOI: 10.1016/0263-7855(96)00018-5
  45. H.D. Loof, L. Nilsson, R. Rigler. J. Am. Chem. Soc., 114 (11), 4028 (1992). DOI: 0.1021/ja00037a002
  46. C.C.J. Roothaan. Rev. Mod. Phys., 23 (2), 69 (1951). DOI: 10.1103/REVMODPHYS.23.69
  47. Y. Duan, C. Wu, S. Chowdhury, M.C. Lee, G. Xiong, W. Zhang, R. Yang, P. Cieplak, R. Luo, T. Lee, J. Caldwell, J. Wang, P. Kollman. J. Comp. Chem., 24 (16), 1999 (2003). DOI: 10.1002/jcc.10349
  48. K.V. Berezin, K.N. Dvoretskiy, V.V. Nechaev, A.M. Likhter, I.T. Shagautdinova, V.V. Tuchin. J. Biomed. Photon. Eng., 6 (2), 20308 (2020). DOI: 10.18287/JBPE20.06.020308

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru