Fluorescent diamond microcrystals with NV- centers for applications in photonics and sensors: identification and photophysical signatures
Osipov V. Yu.
1, Shakhov F. M.
1, Bogdanov K. V.
2, Takai K.
3, Baranov A. V.
21Ioffe Institute, St. Petersburg, Russia
2ITMO University, St. Petersburg, Russia
3Department of Chemical Science and Technology, Hosei University, Koganei, Tokyo, Japan
Email: osipov@mail.ioffe.ru, Fedor.Shakhov@mail.ioffe.ru, kirw.bog@gmail.com, takai@hosei.ac.jp, a_v_baranov@yahoo.com
Synthetic microcrystalline Ib HPHT diamonds synthesized using a nickel-containing catalyst and containing fluorescent negatively charged nitrogen-vacancy (NV-) centers, specially introduced by irradiation with high-energy electrons, were studied. A set of identification signatures corresponding to diamond microcrystals with high optical brightness and a concentration of NV- centers of about 4.5 ppm is shown. Electron paramagnetic resonance signals for nitrogen impurity atoms in the neutral state and nickel in the -1 charge state depend on temperature according to Curie's law, while the signal g=4.295 (W15), associated with Δ ms =2 transitions in the NV- center, demonstrates a different type temperature behavior. Illumination of microcrystals with light in the spectral range of 1.38-2.95 eV at T=100 K entails optical spin polarization for the ms=0 level of the ground unexcited state of 3A2 NV- centers. Synthesized diamond microcrystals can be used in photonics devices. Keywords: Diamond microcrystals, nitrogen-vacancy centers, paramagnetic centers, luminescence, electron paramagnetic resonance.
- A.M. Zaitsev. Optical properties of diamond: A data handbook (Springer--Verlag, Berlin--Heidelberg--NY., 2001). DOI: 10.1007/978-3-662-04548-0
- H.C. Chang, W.W.W. Hsiao, M.C. Su. Fluorescent nanodiamonds (John Wiley \& Sons, Hoboken--Chichester--Oxford, 2019). DOI: 10.1002/9781119477099
- J.H.N. Loubser, J.A. van Wyck. Rep. Prog. Phys., 41, 1201 (1978). DOI: 10.1088/0034-4885/41/8/002
- R.I. Mashkovtsev, Yu.N. Pal'yanov. Sol. St. Commun., 111, 397 (1999). DOI: 10.1016/S0038-1098(99)00180-5
- A.I. Shames, A. Dalis, A.D. Greentree, B.C. Gibson, H. Abe, T. Ohshima, O. Shenderova, A. Zaitsev, P. Reineck. Adv. Opt. Mater., 8, 2001047 (2020). DOI: 10.1002/adom.202001047
- O.A. Shenderova, A.I. Shames, N.A. Nunn, M.D. Torelli, I. Vlasov, A. Zaitsev. J. Vac. Sci. Technol. B, 37 (3), 030802 (2019). DOI: 10.1116/1.5089898
- M.W. Doherty, N.B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup, L.C. L. Hollenberg. Phys. Rep., 528 (1), 1 (2013). DOI: 10.1016/j.physrep.2013.02.001
- J.P. Boudou, P.A. Curmi, F. Jelezko, J. Wrachtrup, P. Aubert, M. Sennour, G. Balasubramanian, R. Reuter, A. Thorel, E. Gaffet. Nanotechnology, 20, 235602 (2009). DOI: 10.1088/0957-4484/20/23/235602
- A.I. Shames, V.Y. Osipov, J.P. Boudou, A.M. Panich, H.J. von Bardeleben, F. Treussart, A.Y. Vul'. J. Phys. D, 48 (15), 155302 (2015). DOI: 10.1088/0022-3727/48/15/155302
- K. Jensen, P. Kehayias, D. Budker. Smart Sensors, Measurement and Instrumentation 19, 553 (2017). DOI: 10.1007/978-3-319-34070-8_18
- V.M. Acosta, E. Bauch, M.P. Ledbetter, C. Santori, K.-M.C. Fu, P.E. Barclay, R.G. Beausoleil, H. Linget, J.F. Roch, F. Treussart, S. Chemerisov, W. Gawlik, D. Budker. Phys. Rev. B, 80, 115202 (2009). DOI: 10.1103/physrevb.80.115202
- M. Fujiwara, Y. Shikano. Nanotechnology, 32, 482002 (2021). DOI: 10.1088/1361-6528/ac1fb1
- G. Kucsko, P.C. Maurer, N.Y. Yao, M. Kubo, H.J. Noh, P.K. Lo, H. Park, M.D. Lukin. Nature, 500 (7460), 54 (2013). DOI: 10.1038/nature12373
- K.O. Ho, M.Y. Leung, Y. Jiang, K.P. Ao, W. Zhang, K.Y. Yip, Y.Y. Pang, K.C. Wong, S.K. Goh, S. Yang. Phys. Rev. Appl., 13, 024041 (2020). DOI: 10.1103/PhysRevApplied.13.024041
- S. Hsieh, P. Bhattacharyya, C. Zu, T. Mittiga, T.J. Smart, F. Machado, B. Kobrin, T.O. Hohn, N.Z. Rui, M. Kamrani, S. Chatterjee, S. Choi, M. Zaletel, V.V. Struzhkin, J.E. Moore, V.I. Levitas, R. Jeanloz, N.Y. Yao. Science, 366, 1349 (2019). DOI: 10.1126/science.aaw4352
- S. Johnson, P.R. Dolan, J.M. Smith. Progr. Quant. Electron., 55, 129 (2017). DOI: 10.1016/j.pquantelec.2017.05.003
- M.J. Degen. On the creation, coherence and entanglement of multi-defect quantum registers in diamond ( Ph. D. thesis, Delft University of Technology, Delft, 2021). DOI: 10.4233/uuid:e0b20592-a0ce-4ec4-8df0-a5aa25084301
- O. Faklaris, V. Joshi, T. Irinopoulou, P. Tauc, M. Sennour, H. Girard, C. Gesset, M. Senour, A. Thorel, J.-C. Arnault, J.-P. Boudou, P.A. Curmi, F. Treussart. ACS Nano, 3, 3955 (2009). DOI: 10.1021/nn901014j
- D. Duan, G.X. Du, V.K. Kavatamane, S. Arumugam, Y.K. Tzeng, H.C. Chang, G. Balasubramanian. Optics Express, 27, 6734 (2019). DOI: 10.1364/OE.27.006734
- W.V. Smith, P.P. Sorokin, I.L. Gelles, G.J. Lasher. Phys. Rev., 115, 1546 (1959). DOI: 10.1103/PhysRev.115.1546
- J.H.N. Loubser, W.P. van Ryneveld. Nature, 211, 517 (1966). DOI: 10.1038/211517a0
- J. Isoya, H. Kanda, J.R. Norris, J. Tang, M.K. Bowman. Phys. Rev. B, 41, 3905 (1990). DOI: 10.1103/physrevb.41.3905
- A.I. Shames, V.Y. Osipov, K.V. Bogdanov, A.V. Baranov, M.V. Zhukovskaya, A. Dalis, S.S. Vagarali, A.J. Rampersaud. J. Phys. Chem. C, 121 (9), 5232 (2017). DOI: 10.1021/acs.jpcc.6b12827
- K.V. Bogdanov, M.V. Zhukovskaya, V.Yu. Osipov, E.V. Ushakova, M.A. Baranov, K. Takai, A. Rampersaud, A.V. Baranov. APL Materials, 6 (8), 086104 (2018). DOI: 10.1063/1.5045535
- V.Yu. Osipov, N.M. Romanov, K.V. Bogdanov, F. Treussart, C. Jentgens, A. Rampersaud. J. Opt. Technol., 85 (2), 63 (2018). DOI: 10.1364/JOT.85.000063
- M.N.R. Ashfold, J.P. Goss, B.L. Green, P.W. May, M.E. Newton, C.V. Peaker. Chem. Rev., 120, 5745 (2020). DOI: 10.1021/acs.chemrev.9b00518
- G.S. Woods, J.A. van Wyck, A.T. Collins. Phil. Mag. B, 62, 589 (1990). DOI: 10.1080/13642819008215257
- G. Davies. Physica B, 273/274, 15 (1999). DOI: 10.1016/s0921-4526(99)00398-1
- S.C. Lawson, D. Fisher, D.C. Hunt, M.J. Newton. J. Phys.: Cond. Matt., 10, 6171 (1998). DOI: 10.1088/0953-8984/10/27/016
- L.J. Su, C.Y. Fang, Y.T. Chang, K.M. Chen, Y.C. Yu, J.H. Hsu, H.C. Chang. Nanotechnology, 24, 315702 (2013). DOI: 10.1088/0957-4484/24/31/315702
- Optical Engineering of Diamond, 1st Edition, ed. by R.P. Mildren and J.R. Rabeau (Wiley-VCH Verlag GmbH \& Co. KGaA, Weinheim, 2013). ISBN: 978-3-527-64862-7
- Z.Z. Liang, X. Jia, H.A. Ma, C.Y. Zang, P.W. Zhu, Q.F. Guan, H. Kanda. Diam. Relat. Mater., 14, 1932 (2005). DOI: 10.1016/j.diamond.2005.06.041
- G. Davies. In: Chemistry and Physics of Carbon: A Series of Advances, ed. by P.L. Walker Jr., P.A. Thrower. Book series (Marcel Dekker, Inc., NY., 1977), vol. 13, pp. 1-143. https://cir.nii.ac.jp/crid/1573387451279760128
- F.M. Shakhov, V.Yu. Osipov, A.A. Krasilin, K. Iizuka, R. Oshima. J. Sol. St. Chem., 307, 122804 (2022). DOI: 10.1016/j.jssc.2021.122804
- A.T. Collins, H. Kanda, J. Isoya, C.A.J. Ammerlaan, J.A. van Wyk. Diam. Relat. Mater., 7 (2-5), 333 (1998). DOI: 10.1016/s0925-9635(97)00270-7
- V.Yu. Osipov, F.M. Shakhov, N.N. Efimov, V.V. Minin, S.V. Kidalov, A.Ya. Vul'. Phys. Solid State, 59, 1146 (2017). DOI: 10.1134/S1063783417060191
- J.A. van Wyck, E.C. Reynhardt, G.L. High, I. Kiflawi. J. Phys. D, 30, 1790 (1997). DOI: 10.1088/0022-3727/30/12/016
- V.Yu. Osipov, F.M. Shakhov, N.M. Romanov, K. Takai. Mendeleev Commun., 32, 645 (2022). DOI: 10.1016/j.mencom.2022.09.026
- V.Yu. Osipov, F. Treussart, S.A. Zargaleh, K. Takai, F.M. Shakhov, B.T. Hogan, A. Baldycheva. Nanoscale Res. Lett., 14 (1), 279 (2019). DOI: 10.1186/s11671-019-3111-y
- V.Yu. Osipov, K.V. Bogdanov, A. Rampersaud, K. Takai, Y. Ishiguro, A.V. Baranov. Opt. Spektrosk., 130, 1922 (2022). DOI: 10.21883/OS.2022.12.54101.4248-22
- J. Jeske, D.W.M. Lau, X. Vidal, L.P. McGuinness, P. Reineck, B.C. Johnson, M.W. Doherty, J.C. McCallum, S. Onoda, F. Jelezko, T. Oshima, T. Volz, J.H. Cole, B.C. Gibson, A.D. Greentree. Nat. Commun., 8, 14000 (2017). DOI: 10.1038/ncomms14000
- A. Savvin, A. Dormidonov, E. Smetanina, V. Mitrokhin, E. Lipatov, D. Genin, S. Potanin, A. Yelisseyev, V. Vins. Nat. Commun., 12, 7118 (2021). DOI: 10.1038/s41467-021-27470-7
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.