Spectral properties of chiral carbon nanoparticles based on glutathione
Stepanidenko E. A.1, Miruschenko M. D.1, Koroleva A.V.2, Zhizhin E.V.2, Mitroshin A. M.1,3, Parfenov P. S.1, Cherevkov S. A.1, Ushakova E. V.1
1International research and educational center for physics of nanostructures, ITMO University, Saint-Petersburg, Russia
2Research Park, Saint Petersburg State University, Saint Petersburg, Russia
3Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg, Russia
Email: eastepanidenko@itmo.ru, ofussr@itmo.ru, dalika@inbox.ru, evgeniy.zhizhin@spbu.ru, almitroshin51@gmail.com, qrspeter@gmail.com, s.cherevkov@itmo.ru, elena.ushakova@itmo.ru

PDF
In this work, carbon nanoparticles (C-dots) were obtained from solution of chiral L-glutathione molecules in formamide. The resulting C-dots have photoluminescence (PL) in the red region of the spectrum at 370-470 nm and a high quantum yield for this band, reaching 10.8%. In the circular dichroism spectra of these C-dots, a signal in the optical transition region of 370-470 nm, associated with sp2-hybridized carbon domains doped with nitrogen and oxygen atoms was observed. Keywords: carbon dots, red photoluminescence, circular dichroism, chirality, glutathione.
  1. B. Wang, G.I.N. Waterhouse, S. Lu. Trends Chem., 5 (1), 76 (2023). DOI: 10.1016/j.trechm.2022.10.005
  2. E.A. Stepanidenko, E.V. Ushakova, A.V. Fedorov, A.L. Rogach. Nanomaterials, 11 (2), 364 (2021). DOI: 10.3390/nano11020364
  3. R. Fu, H. Song, X. Liu, Y. Zhang, G. Xiao, B. Zou, G.I.N. Waterhouse, S. Lu. Chinese J. Chem., 41 (9), 1007 (2023). DOI: 10.1002/CJOC.202200736
  4. N. Gao, L. Huang, T. Li, J. Song, H. Hu, Y. Liu, S. Ramakrishna. J. Appl. Polym. Sci., (2020). DOI: 10.1002/app.48443
  5. A.A. Vedernikova, M.D. Miruschenko, I.A. Arefina, A.A. Babaev, E.A. Stepanidenko, S.A. Cherevkov, I.G. Spiridonov, D.V. Danilov, A.V. Koroleva, E.V. Zhizhin, E.V. Ushakova. Nanomaterials, 12 (19), 3314 (2022). DOI: 10.3390/NANO12193314/S1
  6. M. Sbacchi, M. Mamone, L. Morbiato, P. Gobbo, G. Filippini, M. Prato. ChemCatChem, 15 (16), e202300667 (2023). DOI: 10.1002/CCTC.202300667
  7. E. Liu, T. Liang, E.V. Ushakova, B. Wang, B. Zhang, H. Zhou, G. Xing, C. Wang, Z. Tang, S. Qu, A.L. Rogach. J. Phys. Chem. Lett., 12 (1), 604 (2020). DOI: 10.1021/ACS.JPCLETT.0C03383
  8. J. Wang, Y. Fu, Z. Gu, H. Pan, P. Zhou, Q. Gan, Y. Yuan, C. Liu. Small, (2023). DOI: 10.1002/smll.202303773
  9. D. Li, E. V. Ushakova, A.L. Rogach, S. Qu. Small, 17 (43), 2102325 (2021). DOI: 10.1002/smll.202102325
  10. E.A. Stepanidenko, I.D. Skurlov, P.D. Khavlyuk, D.A. Onishchuk, A.V. Koroleva, E.V. Zhizhin, I.A. Arefina, D.A. Kurdyukov, D.A. Eurov, V.G. Golubev, A.V. Baranov, A.V. Fedorov, E.V. Ushakova, A.L. Rogach. Nanomaterials, 12 (3), (2022). DOI: 10.3390/nano12030543
  11. D. Chen, M. Xu, W. Wu, S. Li. J. Alloys Compd., 701, 75 (2017). DOI: 10.1016/j.jallcom.2017.01.124
  12. J. Zhu, X. Bai, J. Bai, G. Pan, Y. Zhu, Y. Zhai, H. Shao, X. Chen, B. Dong, H. Zhang, H. Song. Nanotechnology, 29 (8), 085705 (2018). DOI: 10.1088/1361-6528/aaa321
  13. S. Sun, L. Zhang, K. Jiang, A. Wu, H. Lin. Chem. Mater., 28 (23), 8659 (2016). DOI: 10.1021/acs.chemmater.6b03695
  14. S. Zhou, Y. Sui, X. Zhu, X. Sun, S. Zhuo, H.Li. Chem. --- An Asian J., 16 (4), 348 (2021). DOI: 10.1002/asia.202001352
  15. A. Do ring, E. Ushakova, A.L. Rogach. Light Sci. Appl., 11, 75 (2022). DOI: 10.1038/s41377-022-00764-1
  16. B. Bartolomei, A. Bogo, F. Amato, G. Ragazzon, M. Prato. Angew. Chemie Int. Ed., 61 (20), e202200038 (2022). DOI: 10.1002/ANIE.202200038
  17. A. Das, E. V. Kundelev, A.A. Vedernikova, S.A. Cherevkov, D. V. Danilov, A. V. Koroleva, E. V. Zhizhin, A.N. Tsypkin, A.P. Litvin, A. V. Baranov, A. V. Fedorov, E. V. Ushakova, A.L. Rogach. Light Sci. Appl., 11, 92 (2022). DOI: 10.1038/s41377-022-00778-9
  18. A. Das, I.A. Arefina, D.V. Danilov, A.V. Koroleva, E. V. Zhizhin, P.S. Parfenov, V.A. Kuznetsova, A.O. Ismagilov, A.P. Litvin, A.V. Fedorov, E.V. Ushakova, A.L. Rogach. Nanoscale, 13 (17), (2021). DOI: 10.1039/d1nr01693h
  19. J.R. Macairan, I. Zhang, A. Clermont-Paquette, R. Naccache, D. Maysinger. Part. Part. Syst. Charact., 37 (1), (2020). DOI: 10.1002/ppsc.201900430
  20. P. Gao, H. Hui, C. Guo, Y. Liu, Y. Su, X. Huang, K. Guo, W. Shang, J. Jiang, J. Tian. Carbon NY., 201, (2023). DOI: 10.1016/j.carbon.2022.09.052
  21. Y. Ganjkhanlou, J.J.E. Maris, J. Koek, R. Riemersma, B.M. Weckhuysen, F. Meirer. J. Phys. Chem. C, 126 (5), (2022). DOI: 10.1021/acs.jpcc.1c10478
  22. A.Visheratina, L. Hesami, A. K. Wilson, N. Baalbaki, N. Noginova, M. A. Noginov, N.A. Kotov. Chirality, 34 (12), (2022). DOI: 10.1002/chir.23509
  23. F. Li, Y. Li, X. Yang, X. Han, Y. Jiao, T. Wei, D. Yang, H. Xu, G. Nie. Angewandte Chemie, 130 (9), (2018). DOI: 10.1002/ange.201712453
  24. Y.Y. Wei, L. Chen, X. Zhang, J.L. Du, Q. Li, J. Luo, X.G. Liu, Y.Z. Yang, S.P. Yu, Y.D. Gao. Biomater. Sci., 10 (15), (2022). DOI: 10.1039/d2bm00429a
  25. S. Wei, B. Wang, H. Zhang, C. Wang, S. Cui, X. Yin, C. Jiang, G. Sun. Chem. Engineering J., 466, (2023). DOI: 10.1016/j.cej.2023.143103
  26. Z. Hallaji, Z. Bagheri, B. Ranjbar. ACS Appl Nano Mater, 6 (5), (2023). DOI: 10.1021/acsanm.2c04466

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru