Metasurface of aluminum nanocylinders to enhance the chemiluminescence of luminol
Dadadzhanov D.R.
1, Palekhova A.V.
1, Vartanyan T. A.
11International research and educational center for physics of nanostructures, ITMO University, Saint-Petersburg, Russia
Email: Tigran.Vartanyan@mail.ru
As a result of numerical modeling, the parameters of a square lattice of aluminum nanocylinders were found, which ensures the maximum enhancement of luminol chemiluminescence at a wavelength of 430 nm. The period of the lattice formed by aluminum nanocylinders and the radius of the nanocylinders were varied at a constant height of 20 nm. The enhancement factor was averaged over a layer of an aqueous solution of the analyte and luminol covering the nanocylinders. While the maximum enhancement factor for chemiluminophore molecules located near the surface of nanocylinders exceeds a thousand, the enhancement value averaged over the reaction mixture layer under optimal conditions was 3.2. Keywords: plasmon resonance, aluminum nanoparticles, chemiluminescence, luminol, modeling.
- I. Bronstein, C.E.M. Olesen. Molecular Methods for Virus Detection, ed. by D.L. Wiedbrauk, D.H. Farkas (Elsevier, 1995), p. 147-174. DOI: 10.1016/B978-012748920-9/50008-X
- L. Cinquanta, D.E. Fontana, N. Bizzaro. Autoim. Highlights, 8 (1), 9 (2017). DOI: 10.1007/s13317-017-0097-2
- B. G?mez-Taylor, M. Palomeque, J.V. Garci a Mateo, J. Marti nez Calatayud. J. Pharm. Biomed. Anal., 41 (2), 347?357 (2021). DOI: 10.1016/j.jpba.2005.11.040
- W. Yu, L. Zhao. TrAC Trends in Analytical Chemistry, 136, 116197 (2021). DOI: 10.1016/j.trac.2021.116197
- L. Liu, C. Dahlgren, H. Elwing, H. Lundqvist. J. Immunol. Methods, 192 (1?2), 173-178 (1996). DOI: 10.1016/0022-1759(96)00049-X
- D.R. Dadadzhanov, I.A. Gladskikh, M.A. Baranov, T. A. Vartanyan, A. Karabchevsky. Sens. and Act. B: Chem. 333, 129453 (2021). DOI: 10.1016/j.snb.2021.129453
- H. Chen, F. Gao, R. He, D. Cui. J. Coll. Interf. Sci., 315 (1), 158-163 (2007). DOI: 10.1016/j.jcis.2007.06.052
- A. Karabchevsky, A. Mosayyebi, A.V. Kavokin. Light: Sci. Appl., 5 (11), e16164-e16164 (2016). DOI: 10.1038/lsa.2016.164
- J. Wang, J. Du. Appl. Sci., 6 (9), 239 (2016). DOI: 10.3390/app6090239
- J. Hu, L. Chen, Z. Lian, M. Cao, H. Li, W. Sun, N. Tong, H. Zeng. J. Phys. Chem. C., 116 (29), 15584-15590 (2012). DOI: 10.1021/jp305844g
- P.B. Johnson, R.W. Christy. Phys. Rev. B., 6 (12), 4370-4379 (1972). DOI: 10.1103/PhysRevB.6.4370
- A.E. Krasnok, A. P. Slobozhanyuk, C.R. Simovski, S.A. Tretyakov, A.N. Poddubny, A.E. Miroshnichenko, Yu.S. Kivshar, P.A. Belov. Sci. Rep., 5, 12956 (2015). DOI: 10.1038/srep12956
- D.A. Gorbenkoa, P.V. Filatova, D.R. Dadadzhanov, K.K. Kirichek, M.Yu. Berezovskaya, T.A. Vartanyan. Proc. SPIE, 12663, 1266307 (2023). DOI: 10.1117/12.2676447
- K. Aslan, C.D. Geddes. Chem. Soc. Rev., 38, 2556 (2009). DOI: 10.1039/B807498B
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.