Second harmonic microscopy from nearsurface plasma ignited by tightly focused femtosecond fiber laser beam
Garmatina A.A. 1, Mareev E.I1, Korshunov A.A. 1,2, Mozhaeva M.D. 1,2, Minaev N.V. 1, Muslimov A. E. 1, Hmelenin D.N.1, Asadchikov V.E. 1, Gordienko V.M. 1,3
1Kurchatov Complex Crystallography and Photonics, NRC “Kurchatov Institute” Moscow, Russia
2National Research Nuclear University “MEPhI”, Moscow, Russia
3Department of Physics, Lomonosov Moscow State University, Moscow, Russia
Email: alga009@mail.ru

PDF
Method measuring in real time the size of the microplasma, which is a source of X-rays, ignited on the target surface by a tightly focused (NA=0.2) repetition rate femtosecond fiber laser beam (280 fs, 10-25 μJ) has been developed. The technique based on the backreflected second harmonic signal from the microplasma. It has been stated that the size of the microplasma second harmonic beam is ~8.5 μm at the pulse energy of 10 μJ, pulse repetition rate of 2 MHz, which corresponds to the regime of achieving the maximum X-ray yield and minimum of the microplasma size. The conversion efficiency at laser intensity of ~1014 W/cm2 into the second harmonic is about 10-6. Keywords: fiber laser, femtosecond laser pulse, backreflected laser plasma second harmonic.
  1. T. Wang, C. Li, B. Ren et al. High Power Laser Science and Engineering, 11, e25 (2023). DOI: 10.1017/hpl.2023.12
  2. A. Tunnermann, C. Momma, S. Nolte. Appl. Phys. A, 129, 157 (2023). DOI: 10.1007/s00339-023-06403-9
  3. J. Th gersen, A. Borowiec, H. Haugen, F. McNeill, I. Stronach. Appl. Phys. A, 73, 361-363 (2001). DOI: 10.1007/s003390100741
  4. L. Marti n, J. Benlliure, D. Cortina-Gil, A. Haruna, C. Ruiz. Physica Medica, 82, 163-170 (2021). DOI: 10.1016/j.ejmp.2020.12.023
  5. A.A. Garmatina, V.E. Asadchikov, A.V. Buzmakov, I.G. Dyachkova, etc. Crystallografiya, 67 (6), 1012 (2022) (in Russian). DOI: 10.1134/S1063774522060074
  6. D. Brinkmeier, D. Holder, A. Loescher, Ch. Rocker et al. Appl. Phys. A, 128, 35 (2022). DOI: 10.1007/s00339-021-05156-7
  7. V.A. Aleshkevich, V.M. Gordienko, B.G. Bravy. JOSA B, 40 (5), 1031-1038 (2023). DOI: 10.1364/JOSAB.484265
  8. K. Pangovski, O. Otanocha, Sh. Zhong, M. Sparkes at al. Appl. Phys. A, 123, 114 (2017). DOI: 10.1007/s00339-016-0589-3
  9. J. Finger, M. Reininghaus. Optics Express, 22 (15), 18790n (2014). DOI: 10.1364/OE.22.018790
  10. M. Oujja, J. Izquierdo, L. Banares, R. de Nalda, M. Castillejo. Chem. Phys., 20, 16956 (2018). DOI: 10.1039/C8CP02825G
  11. A.B. Savelev, S.A. Akhmanov, I.M. Bayanov, S.V. Gaponov et al. Proc. SPIE, 1627, 334 (1992). DOI: 10.1117/12.60175
  12. N.I. Koroteev, V.A. Makarov, S.N. Volkov. Optics Commun., 138, 113-117 (1997). DOI: 10.1016/S0030-4018(97)00032-1
  13. V.M. Gordienko, S.A. Magnitsky, T.Yu. Moskalev, V.T. Platonenko. Izvestiya RAN. Ser. fizicheskaya, (in Russian). 60 (3), 10-17 (1996)
  14. V.M. Gordienko, I.A. Zhvaniya, A.S. Khomenko. SPIE Proceed., 7994, 79940P (2011). DOI: 10.1117/12.881882
  15. L. Gizzi, D. Giulietti, A. Guiletti, P. Audebert, S. Bastiani, J. Geindre, A. Myayrowicz. Phis. Rev. Lett., 76 (13), 2278 (1996). DOI: 10.1103/PhysRevLett.76.2278
  16. V.M. Gordienko, I.A. Makarov, E.V. Rakov. Proc. SPIE, 6606, 66060S (2007). DOI: 10.1117/12.729640
  17. A.A. Garmatina et al. Optics Express, 31 (26), 44259-44272. (2023). DOI: 10.1364/OE.502200
  18. D. von der Linde, H. Schulz, T. Engers, H. Schiiler. IEEE J. QE, 28 (10), 2388 (1992) DOI: 10.1109/3.159545
  19. A.A. Garmatina., B.G. Bravy, F.V. Potemkin, M.M. Nazarov, V.M. Gordienko. J. Phys. Conf. Ser., 1692, 012004 (2020). DOI: 10.1088/1742-6596/1692/1/012004
  20. R. Yamada, W. Komatsubara, H. Sakurai, K. Konishi et al. Optics Express, 31 (5), 7363-7382 (2023). DOI: 10.1364/OE.482986
  21. L. Qi, K. Nishii, M. Yasui, H. Aoki, Y. Namba. Optics and Lasers in Engineering, 48 (10), 1000-1007 (2010). DOI: 10.1016/j.optlaseng.2010.05.006
  22. S. Kudryzshov, P. Danilov, A. Rupasov, S. Khonina et al. Optical Materials Express, 10 (12), 3291 (2020). DOI: 10.1364/OME.412399
  23. S.M. Klimentov, P.A. Pivovarov, V.I. Konov, D. Braitling, F. Dausinger. Kvant. elektron., 34 (6), 537-540 (2004). (in Russian) DOI: 10.1070/QE2004v034n06ABEH002769
Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru