Second harmonic microscopy from nearsurface plasma ignited by tightly focused femtosecond fiber laser beam
Garmatina A.A. 1, Mareev E.I1, Korshunov A.A. 1,2, Mozhaeva M.D. 1,2, Minaev N.V. 1, Muslimov A. E. 1, Hmelenin D.N.1, Asadchikov V.E. 1, Gordienko V.M. 1,3
1Kurchatov Complex Crystallography and Photonics, NRC “Kurchatov Institute” Moscow, Russia
2National Research Nuclear University “MEPhI”, Moscow, Russia
3Department of Physics, Lomonosov Moscow State University, Moscow, Russia
Email: alga009@mail.ru
Method measuring in real time the size of the microplasma, which is a source of X-rays, ignited on the target surface by a tightly focused (NA=0.2) repetition rate femtosecond fiber laser beam (280 fs, 10-25 μJ) has been developed. The technique based on the backreflected second harmonic signal from the microplasma. It has been stated that the size of the microplasma second harmonic beam is ~8.5 μm at the pulse energy of 10 μJ, pulse repetition rate of 2 MHz, which corresponds to the regime of achieving the maximum X-ray yield and minimum of the microplasma size. The conversion efficiency at laser intensity of ~1014 W/cm2 into the second harmonic is about 10-6. Keywords: fiber laser, femtosecond laser pulse, backreflected laser plasma second harmonic.
- T. Wang, C. Li, B. Ren et al. High Power Laser Science and Engineering, 11, e25 (2023). DOI: 10.1017/hpl.2023.12
- A. Tunnermann, C. Momma, S. Nolte. Appl. Phys. A, 129, 157 (2023). DOI: 10.1007/s00339-023-06403-9
- J. Th gersen, A. Borowiec, H. Haugen, F. McNeill, I. Stronach. Appl. Phys. A, 73, 361-363 (2001). DOI: 10.1007/s003390100741
- L. Marti n, J. Benlliure, D. Cortina-Gil, A. Haruna, C. Ruiz. Physica Medica, 82, 163-170 (2021). DOI: 10.1016/j.ejmp.2020.12.023
- A.A. Garmatina, V.E. Asadchikov, A.V. Buzmakov, I.G. Dyachkova, etc. Crystallografiya, 67 (6), 1012 (2022) (in Russian). DOI: 10.1134/S1063774522060074
- D. Brinkmeier, D. Holder, A. Loescher, Ch. Rocker et al. Appl. Phys. A, 128, 35 (2022). DOI: 10.1007/s00339-021-05156-7
- V.A. Aleshkevich, V.M. Gordienko, B.G. Bravy. JOSA B, 40 (5), 1031-1038 (2023). DOI: 10.1364/JOSAB.484265
- K. Pangovski, O. Otanocha, Sh. Zhong, M. Sparkes at al. Appl. Phys. A, 123, 114 (2017). DOI: 10.1007/s00339-016-0589-3
- J. Finger, M. Reininghaus. Optics Express, 22 (15), 18790n (2014). DOI: 10.1364/OE.22.018790
- M. Oujja, J. Izquierdo, L. Banares, R. de Nalda, M. Castillejo. Chem. Phys., 20, 16956 (2018). DOI: 10.1039/C8CP02825G
- A.B. Savelev, S.A. Akhmanov, I.M. Bayanov, S.V. Gaponov et al. Proc. SPIE, 1627, 334 (1992). DOI: 10.1117/12.60175
- N.I. Koroteev, V.A. Makarov, S.N. Volkov. Optics Commun., 138, 113-117 (1997). DOI: 10.1016/S0030-4018(97)00032-1
- V.M. Gordienko, S.A. Magnitsky, T.Yu. Moskalev, V.T. Platonenko. Izvestiya RAN. Ser. fizicheskaya, (in Russian). 60 (3), 10-17 (1996)
- V.M. Gordienko, I.A. Zhvaniya, A.S. Khomenko. SPIE Proceed., 7994, 79940P (2011). DOI: 10.1117/12.881882
- L. Gizzi, D. Giulietti, A. Guiletti, P. Audebert, S. Bastiani, J. Geindre, A. Myayrowicz. Phis. Rev. Lett., 76 (13), 2278 (1996). DOI: 10.1103/PhysRevLett.76.2278
- V.M. Gordienko, I.A. Makarov, E.V. Rakov. Proc. SPIE, 6606, 66060S (2007). DOI: 10.1117/12.729640
- A.A. Garmatina et al. Optics Express, 31 (26), 44259-44272. (2023). DOI: 10.1364/OE.502200
- D. von der Linde, H. Schulz, T. Engers, H. Schiiler. IEEE J. QE, 28 (10), 2388 (1992) DOI: 10.1109/3.159545
- A.A. Garmatina., B.G. Bravy, F.V. Potemkin, M.M. Nazarov, V.M. Gordienko. J. Phys. Conf. Ser., 1692, 012004 (2020). DOI: 10.1088/1742-6596/1692/1/012004
- R. Yamada, W. Komatsubara, H. Sakurai, K. Konishi et al. Optics Express, 31 (5), 7363-7382 (2023). DOI: 10.1364/OE.482986
- L. Qi, K. Nishii, M. Yasui, H. Aoki, Y. Namba. Optics and Lasers in Engineering, 48 (10), 1000-1007 (2010). DOI: 10.1016/j.optlaseng.2010.05.006
- S. Kudryzshov, P. Danilov, A. Rupasov, S. Khonina et al. Optical Materials Express, 10 (12), 3291 (2020). DOI: 10.1364/OME.412399
- S.M. Klimentov, P.A. Pivovarov, V.I. Konov, D. Braitling, F. Dausinger. Kvant. elektron., 34 (6), 537-540 (2004). (in Russian) DOI: 10.1070/QE2004v034n06ABEH002769