Efficient THz emission by a photoconductive emitter with tight photocarrier confinement within high-aspect ratio plasmonic electrodes
Ponomarev D. S.1,2,3, Lavrukhin D. V.1,2, Yachmenev A. E.1,2, Galiev R. R.1, Khabibullin R. A.1,2,3, Goncharov Yu. G.4, Zaytsev K. I.4
1 Institute of Ultra High Frequency Semiconductor Electronics of RAS, Moscow, Russia
2Bauman Moscow State Technical University, Moscow, Russia
3Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region, Russia
4Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
Email: ponomarev_dmitr@mail.ru
We propose, simulate and investigate how the thickness of plasmonic electrode h and the ratio between h and the period of subwavelength periodical metallic (plasmonic) grating h/p on the THz emission efficiency in a photoconductive emitter. By numerical optimization we determine the grating geometry with respect to maximal optical transmission. We showcase that simultaneous increase in h and h/p allows efficient excitation of plasmon modes in the grating, that follows with an THz power enhancement up to 10000 compared to conventional emitter without grating. The overall THz power exceeds 5 μW in the 0.1-4 THz bandwidth, with the conversion efficiency of ~0.2%. The developed grating design can be also used for photoconductive THz detectors in modern THz spectroscopic and imaging setups. Keywords: terahertz science and technology, terahertz pulsed spectroscopy, terahertz element base, photoconductive antenna, plasmonic grating, optical light confinement, semiconductors.
- D.S. Ponomarev, A.E. Yachmenev, D.V. Lavrukhin, R.A. Khabibullin, N.V. Chernomyrdin, I.E. Spektor, V.N. Kurlov, V.V. Kveder, K.I. Zaytsev. Phys. Usp., 67 (1), 3-21 (2024). DOI: 10.3367/UFNe.2023.07.039503
- X. Li, J. Li, Y. Li, A. Ozcan, M. Jarrahi. Light: Sci. Appl., 12, 233 (2023). DOI: 10.1038/s41377-023-01278-0
- E. Castro-Camus, M. Alfaro M. Photon. Res., 4 (3), 36 (2016). DOI: 10.1364/PRJ.4.000A36
- A.E. Yachmenev, D.V. Lavrukhin, I.A. Glinskiy, N.V. Zenchenko, Yu.G. Goncharov, I.E. Spektor, R.A. Khabibullin, T. Otsuji, D.S. Ponomarev. Opt. Eng., 59 (6), 061608 (2019). DOI: 10.1117/1.OE.59.6.061608
- A. Singh, A. Pashkin, S. Winnerl, M. Helm, H. Schneider. ACS Photon., 5, 2718 (2018). DOI: 10.1021/acsphotonics.8b00460
- A. Singh, A. Pashkin, S. Winnerl, M. Welsch, C. Beckh, P. Sulzer, A. Leitenstorfer, M. Helm, H. Schneider. Light: Sci. Appl., 9, 30 (2020). DOI: 10.1038/s41377-020-0265-4
- D.H. Auston. Appl. Phys. Lett., 26, 101 (1975). DOI: 10.1063/1.88079
- P.-K. Lu, X. Jiang, Y. Zhao, D. Turan, M. Jarrahi. Appl. Phys. Lett., 120 (26), 261107 (2022). DOI: 10.1063/5.0098340
- I.E. Ilyakov, B.V. Shishkin, V.L. Malevich, D.S. Ponomarev, R.R. Galiev, A.Yu. Pavlov, A.E. Yachmenev, S.P. Kovalev, M. Chen, R.A. Akhmedzhanov, R.A. Khabibullin. Opt. Lett., 46 (14), 3360 (2021). DOI: 10.1364/OL.428599
- S. Lepeshov, A. Gorodetsky, A. Krasnok, E. Rafailov, P. Belov. Las. Photon. Rev., 11, 1600199 (2017). DOI: 10.1002/lpor.201600199
- C. Berry, N. Wang, M. Hashemi, M. Unlu, M. Jarrahi. Nat. Commun., 4, 1622 (2013). DOI: 10.1038/ncomms2638
- E. Isgandarov, L. Pichon, X. Ropagnol, M.A. El Khakani, T. Ozaki. J. Appl. Phys., 133, 153102 (2023). DOI: 10.1063/5.0143238
- D.S. Ponomarev, D.V. Lavrukhin, I.A. Glinskiy, A.E. Yachmenev, N.V. Zenchenko, R.A. Khabibullin, T. Otsuji, Yu. Goncharov, K.I. Zaytsev. Opt. Lett., 48 (5), 1220 (2023). DOI: 10.1364/OL.486431
- A. Gorodetsky, I.T. Leite, E.U. Rafailov. Appl. Phys. Lett., 119 (11), 111102 (2021). DOI: 10.1063/5.0062720
- A. Gorodetsky, D.V. Lavrukhin, D.S. Ponomarev, S.V. Smirnov, A. Yadav, R.A. Khabibullin, E.U. Rafailov. IEEE J. Select. Top. Quant. Electron., 29 (5), 8500505 (2023). DOI: 10.1109/JSTQE.2023.3271830
- K.A. Kuznetsov, S.A. Tarasenko, P.M. Kovaleva, P.I. Kuznetsov, D.V. Lavrukhin, Yu.G. Goncharov, A.A. Ezhov, D.S. Ponomarev, G.Kh. Kitaeva. Nanomat., 12, 3779 (2022). DOI: 10.3390/nano12213779
- D.V. Lavrukhin, A.E. Yachmenev, I.A. Glinskiy, R.A. Khabibullin, Y.G. Goncharov, M. Ryzhii, T. Otsuji, I.E. Spector, M. Shur, M. Skorobogatiy, K.I. Zaytsev, D.S. Ponomarev. AIP Adv., 9, 015112 (2019). DOI: 10.1063/1.5081119
- D.S. Ponomarev, D.V. Lavrukhin, N.V. Zenchenko, T.V. Frolov, I.A. Glinskiy, R.A. Khabibullin, G.M. Katyba, V.N. Kurlov, T. Otsuji, K.I. Zaytsev. Opt. Lett., 47 (7), 1899 (2022). DOI: 10.1364/OL.452192
- I.V. Minin, O.V. Minin, I.A. Glinskiy, R.A. Khabibullin, R. Malureanu, A. Lavrinenko, D.I. Yakubovsky, V.S. Volkov, D.S. Ponomarev. Appl. Phys. Lett., 118, 131107 (2021). DOI: 10.1063/5.0043923
- I.H. Malitson, F.V. Murphy, W.S. Rodney. J. Opt. Soc. Am., 48, 72 (1958). DOI: 10.1364/JOSA.48.000072
- B.Y. Hsieh, M. Jarrahi. J. Appl. Phys., 109, 084326 (2011). DOI: 10.1063/1.3567909
- D.V. Lavrukhin, R.R. Galiev, A.Yu. Pavlov, A.E. Yachmenev, M.V. Maytama, I.A. Glinskiy, R.A. Khabibullin, Yu.G. Goncharov, K.I. Zaytsev, D.S. Ponomarev. Opt. Spectrosc., 126, 580 (2019). DOI: 10.1134/S0030400X19050199
- D.V. Lavrukhin, A.E. Yachmenev, I.A. Glinskiy, N.V. Zenchenko, R.A. Khabibullin, Yu.G. Goncharov, I.E. Spektor, K.I. Zaytsev, D.S. Ponomarev. Opt. Spectrosc., 128, 1018 (2020). DOI: 10.1134/S0030400X20070103.
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.