Efficient THz emission by a photoconductive emitter with tight photocarrier confinement within high-aspect ratio plasmonic electrodes
Ponomarev D. S.1,2,3, Lavrukhin D. V.1,2, Yachmenev A. E.1,2, Galiev R. R.1, Khabibullin R. A.1,2,3, Goncharov Yu. G.4, Zaytsev K. I.4
1 Institute of Ultra High Frequency Semiconductor Electronics of RAS, Moscow, Russia
2Bauman Moscow State Technical University, Moscow, Russia
3Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region, Russia
4Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
Email: ponomarev_dmitr@mail.ru

PDF
We propose, simulate and investigate how the thickness of plasmonic electrode h and the ratio between h and the period of subwavelength periodical metallic (plasmonic) grating h/p on the THz emission efficiency in a photoconductive emitter. By numerical optimization we determine the grating geometry with respect to maximal optical transmission. We showcase that simultaneous increase in h and h/p allows efficient excitation of plasmon modes in the grating, that follows with an THz power enhancement up to 10000 compared to conventional emitter without grating. The overall THz power exceeds 5 μW in the 0.1-4 THz bandwidth, with the conversion efficiency of ~0.2%. The developed grating design can be also used for photoconductive THz detectors in modern THz spectroscopic and imaging setups. Keywords: terahertz science and technology, terahertz pulsed spectroscopy, terahertz element base, photoconductive antenna, plasmonic grating, optical light confinement, semiconductors.
  1. D.S. Ponomarev, A.E. Yachmenev, D.V. Lavrukhin, R.A. Khabibullin, N.V. Chernomyrdin, I.E. Spektor, V.N. Kurlov, V.V. Kveder, K.I. Zaytsev. Phys. Usp., 67 (1), 3-21 (2024). DOI: 10.3367/UFNe.2023.07.039503
  2. X. Li, J. Li, Y. Li, A. Ozcan, M. Jarrahi. Light: Sci. Appl., 12, 233 (2023). DOI: 10.1038/s41377-023-01278-0
  3. E. Castro-Camus, M. Alfaro M. Photon. Res., 4 (3), 36 (2016). DOI: 10.1364/PRJ.4.000A36
  4. A.E. Yachmenev, D.V. Lavrukhin, I.A. Glinskiy, N.V. Zenchenko, Yu.G. Goncharov, I.E. Spektor, R.A. Khabibullin, T. Otsuji, D.S. Ponomarev. Opt. Eng., 59 (6), 061608 (2019). DOI: 10.1117/1.OE.59.6.061608
  5. A. Singh, A. Pashkin, S. Winnerl, M. Helm, H. Schneider. ACS Photon., 5, 2718 (2018). DOI: 10.1021/acsphotonics.8b00460
  6. A. Singh, A. Pashkin, S. Winnerl, M. Welsch, C. Beckh, P. Sulzer, A. Leitenstorfer, M. Helm, H. Schneider. Light: Sci. Appl., 9, 30 (2020). DOI: 10.1038/s41377-020-0265-4
  7. D.H. Auston. Appl. Phys. Lett., 26, 101 (1975). DOI: 10.1063/1.88079
  8. P.-K. Lu, X. Jiang, Y. Zhao, D. Turan, M. Jarrahi. Appl. Phys. Lett., 120 (26), 261107 (2022). DOI: 10.1063/5.0098340
  9. I.E. Ilyakov, B.V. Shishkin, V.L. Malevich, D.S. Ponomarev, R.R. Galiev, A.Yu. Pavlov, A.E. Yachmenev, S.P. Kovalev, M. Chen, R.A. Akhmedzhanov, R.A. Khabibullin. Opt. Lett., 46 (14), 3360 (2021). DOI: 10.1364/OL.428599
  10. S. Lepeshov, A. Gorodetsky, A. Krasnok, E. Rafailov, P. Belov. Las. Photon. Rev., 11, 1600199 (2017). DOI: 10.1002/lpor.201600199
  11. C. Berry, N. Wang, M. Hashemi, M. Unlu, M. Jarrahi. Nat. Commun., 4, 1622 (2013). DOI: 10.1038/ncomms2638
  12. E. Isgandarov, L. Pichon, X. Ropagnol, M.A. El Khakani, T. Ozaki. J. Appl. Phys., 133, 153102 (2023). DOI: 10.1063/5.0143238
  13. D.S. Ponomarev, D.V. Lavrukhin, I.A. Glinskiy, A.E. Yachmenev, N.V. Zenchenko, R.A. Khabibullin, T. Otsuji, Yu. Goncharov, K.I. Zaytsev. Opt. Lett., 48 (5), 1220 (2023). DOI: 10.1364/OL.486431
  14. A. Gorodetsky, I.T. Leite, E.U. Rafailov. Appl. Phys. Lett., 119 (11), 111102 (2021). DOI: 10.1063/5.0062720
  15. A. Gorodetsky, D.V. Lavrukhin, D.S. Ponomarev, S.V. Smirnov, A. Yadav, R.A. Khabibullin, E.U. Rafailov. IEEE J. Select. Top. Quant. Electron., 29 (5), 8500505 (2023). DOI: 10.1109/JSTQE.2023.3271830
  16. K.A. Kuznetsov, S.A. Tarasenko, P.M. Kovaleva, P.I. Kuznetsov, D.V. Lavrukhin, Yu.G. Goncharov, A.A. Ezhov, D.S. Ponomarev, G.Kh. Kitaeva. Nanomat., 12, 3779 (2022). DOI: 10.3390/nano12213779
  17. D.V. Lavrukhin, A.E. Yachmenev, I.A. Glinskiy, R.A. Khabibullin, Y.G. Goncharov, M. Ryzhii, T. Otsuji, I.E. Spector, M. Shur, M. Skorobogatiy, K.I. Zaytsev, D.S. Ponomarev. AIP Adv., 9, 015112 (2019). DOI: 10.1063/1.5081119
  18. D.S. Ponomarev, D.V. Lavrukhin, N.V. Zenchenko, T.V. Frolov, I.A. Glinskiy, R.A. Khabibullin, G.M. Katyba, V.N. Kurlov, T. Otsuji, K.I. Zaytsev. Opt. Lett., 47 (7), 1899 (2022). DOI: 10.1364/OL.452192
  19. I.V. Minin, O.V. Minin, I.A. Glinskiy, R.A. Khabibullin, R. Malureanu, A. Lavrinenko, D.I. Yakubovsky, V.S. Volkov, D.S. Ponomarev. Appl. Phys. Lett., 118, 131107 (2021). DOI: 10.1063/5.0043923
  20. I.H. Malitson, F.V. Murphy, W.S. Rodney. J. Opt. Soc. Am., 48, 72 (1958). DOI: 10.1364/JOSA.48.000072
  21. B.Y. Hsieh, M. Jarrahi. J. Appl. Phys., 109, 084326 (2011). DOI: 10.1063/1.3567909
  22. D.V. Lavrukhin, R.R. Galiev, A.Yu. Pavlov, A.E. Yachmenev, M.V. Maytama, I.A. Glinskiy, R.A. Khabibullin, Yu.G. Goncharov, K.I. Zaytsev, D.S. Ponomarev. Opt. Spectrosc., 126, 580 (2019). DOI: 10.1134/S0030400X19050199
  23. D.V. Lavrukhin, A.E. Yachmenev, I.A. Glinskiy, N.V. Zenchenko, R.A. Khabibullin, Yu.G. Goncharov, I.E. Spektor, K.I. Zaytsev, D.S. Ponomarev. Opt. Spectrosc., 128, 1018 (2020). DOI: 10.1134/S0030400X20070103.

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru