Laser engineering of microbial systems: a new tool for microbiology
Minaev N.V. 1, Zhigarkov V.S.1, Cheptsov V.S.1,2, Yusupov V.I.1
1Institute Photon Technologies Kurchatov Complex of Crystallography and Photonics NRC "Kurchatov Institute"
2Department of Soil Science, Lomonosov Moscow State University
Email: minaevn@gmail.com, vzhigarkov@gmail.com, cheptcov.vladimir@gmail.com, iouss@yandex.ru

PDF
One of the new areas of laser bioprinting is laser engineering of microbial systems (LEMS). This technology involves controlled transfer of gel microdroplets containing microorganisms from a donor substrate to acceptor media using a nanosecond laser pulse. During such transfer, living systems are affected by various physical factors: radiation, shock waves, temperature surges. The work carried out a study of the effect on Escherichia coli cells of nanoparticles that are formed during the destruction of a thin gold absorbent coating of the donor plate. It has been shown that the sizes of these nanoparticles, their concentration in the colloid, and the zeta-potential depend significantly on the laser pulse energy. It has been established that Au nanoparticles have a certain effect on the kinetics of microbial growth. A systematization of the main physical factors influencing microorganisms during their laser-induced spatial transfer has been carried out, and the most important scientific results from a practical point of view obtained using promising LEMS technology have been analyzed. Keywords: laser bioprinting, laser engineering of microbial systems, LEMS, direct laser-induced transfer, microbiology, impact factors.
  1. W.H. Lewis, G. Tahon, P. Geesink, D.Z. Sousa, T.J.G. Ettema. Nat. Rev. Microbiol., 19 (4), 225 (2021). DOI: 10.1038/s41579-020-00458-8
  2. J. Clardy, M.A. Fischbach, C.T. Walsh. Nat. Biotechnol., 24 (12), 1541 (2006). DOI: 10.1038/nbt1266
  3. J.V. Pham, M.A. Yilma, A. Feliz, M.T. Majid, N. Maffetone, J.R. Walker, E. Kim, H.J. Cho, J.M. Reynolds, M.C. Song, et al. Front. Microbiol., 19 (4), 10 (2019). DOI: 10.3389/fmicb.2019.01404
  4. A. Dance. Nature, 582, 301 (2020). DOI: 10.1038/d41586-020-01684-z
  5. V.I. Yusupov, M.V. Gorlenko, V.S. Cheptsov, N.V. Minaev, E.S. Churbanova, V.S. Zhigarkov, E.A. Chutko, S.A. Evlashin, B.N. Chichkov, V.N. Bagratashvili. Laser Phys. Lett., 15 (6), 065604 (2018). DOI: 10.1088/1612-202X/aab5ef
  6. P. Liang, B. Liu, Y. Wang, K. Liu, Y. Zhao, W.E. Huang, B. Li. Appl. Environ. Microbiol., 88 (3), e01165-21 (2022). DOI: 10.1128/aem.01165-21
  7. Y. Deng, P. Renaud, Z. Guo, Z. Huang, Y. Chen. J. Biol. Eng., 11 (1), 2 (2017). DOI: 10.1186/s13036-016-0045-0
  8. V.S. Cheptsov, S.I. Tsypina, N.V. Minaev, V.I. Yusupov, B. Chichkov. Int. J. Bioprinting, |bf 5 (1), 1 (2018). DOI: 10.18063/ijb.v5i1.165
  9. N.V. Minaev, V.I. Yusupov, B.N. Chichkov. Patent RF, RU198221U1 (2020). (in Russian)
  10. J. Feichtmayer, L. Deng, C. Griebler. Front. Microbiol., 8 (2017). DOI: 10.3389/fmicb.2017.02192
  11. N.R. Schiele, D.T. Corr, Y. Huang, N.A. Raof, Y. Xie, D.B. Chrisey. Biofabrication, 2 (3), 032001 (2010). DOI: 10.1088/1758-5082/2/3/032001
  12. H.Q. Xu, J.C. Liu, Z.Y. Zhang, C.X. Xu. Mil. Med. Res., 9 (1), 1 (2022). DOI: 10.1186/s40779-022-00429-5
  13. Z.P. Kacarevic, P.M. Rider, S. Alkildani, S. Retnasingh, R. Smeets, O. Jung, Z. Ivanisevic, M. Barbeck. Materials (Basel), 11 (11),(2018). DOI: 10.3390/ma11112199
  14. J. Adhikari, A. Roy, A. Das, M. Ghosh, S. Thomas, A. Sinha, J. Kim, P. Saha. Macromol. Biosci., 21 (1), (2021). DOI: 10.1002/mabi.202000179
  15. B. Hopp, T. Smausz, N. Barna, C. Vass, Z. Antal, L. Kredics, D. Chrisey. J. Phys. D. Appl. Phys., 38 (6), 833 (2005). DOI: 10.1088/0022-3727/38/6/007
  16. H. Assad, A. Assad, A. Kumar. Pharmaceutics, 15 (1), 255 (2023). DOI: 10.3390/pharmaceutics15010255
  17. Y.N. Slavin, H. Bach. Nanomaterials, 12 (24), 4470 (2022). DOI: 10.3390/nano12244470
  18. R. Gaebel, N. Ma, J. Liu, J. Guan, L. Koch, C. Klopsch, M. Gruene, A. Toelk, W. Wang, P. Mark, et al. Biomaterials, 32 (35), 9218 (2011). DOI: 10.1016/j.biomaterials.2011.08.071
  19. E. Pages, M. Remy, V. Keriquel, M.M. Correa, B. Guillotin, F. Guillemot. J. Nanotechnol. Eng. Med., 6 (2), 021005 (2015). DOI: 10.1115/1.4031217
  20. J.H. Niazi, M.B. Gu. Toxicity of Metallic Nanoparticles in Microorganisms- a Review. In Atmospheric and Biological Environmental Monitoring (Springer Netherlands, Dordrecht, 2009), pp. 193-206. DOI: 10.1007/978-1-4020-9674-7_12
  21. I.A. Mamonova, I.V. Babushkina, I.A. Norkin, E.V. Gladkova, M.D. Matasov, D.M. Puchin'yan. Nanotechnologies Russ., 10 (1-2), 128 (2015). DOI: 10.1134/S1995078015010139
  22. M.R. Khan, K.M. Fromm, T.F. Rizvi, B. Giese, F. Ahamad, R.J. Turner, M. Fueg, E. Marsili. Part. Part. Syst. Charact., 37 (5), 1 (2020). DOI: 10.1002/ppsc.201900419
  23. V.S. Zhigarkov, E.V. Ivanovskaya, K.O. Aiyyzy, A.V. Ovcharov. JTPhLet, 49 (22), 31 (2023). DOI: 10.61011/PJTF.2023.22.56597.19649
  24. M. Blazanin. Gcplyr: An R Package for Microbial Growth Curve Data Analysis. bioRxiv 2023.04.30.538883, (2023). DOI: 10.1101/2023.04.30.53888
  25. M. Peleg, M.G. Corradini. Crit. Rev. Food Sci. Nutr., 51 (10), 917 (2011). DOI: 10.1080/10408398.2011.570463
  26. K. Sprouffske, A. Wagner. BMC Bioinformatics, 17 (1), 17 (2016). DOI: 10.1186/s12859-016-1016-7
  27. A. Agha, W. Waheed, I. Stiharu, V. Nerguizian, G. Destgeer, E. Abu-Nada, A. Alazzam. A Review on Microfluidic-Assisted Nanoparticle Synthesis, and Their Applications Using Multiscale Simulation Methods (Springer US, 2023), vol. 18. DOI: 10.1186/s11671-023-03792-x
  28. L. Koch, O. Brandt, A. Deiwick, B. Chichkov. Int. J. Bioprinting, 3 (1), 1 (2017). DOI: 10.18063/IJB.2017.01.001
  29. L. Koch, A. Deiwick, B. Chichkov. 3D Printing and Biofabrication, 303 (2018)
  30. S. Catros, J.-C. Fricain, B. Guillotin, B. Pippenger, R. Bareille, M. Remy, E. Lebraud, B. Desbat, J. Amede, F. Guillemot. Biofabrication, 3 (2), 025001 (2011). DOI: 10.1088/1758-5082/3/2/025001
  31. Y. Zhang, T.P. Shareena Dasari, H. Deng, H. Yu. J. Environ. Sci. Heal. Part C: Environ. Carcinog. Ecotoxicol. Rev., 33 (3), 286 (2015). DOI: 10.1080/10590501.2015.1055161
  32. K. Chandran, S. Song, S. Il Yun. Arab. J. Chem., 12 (8), 1994 (2019). DOI: 10.1016/j.arabjc.2014.11.041
  33. D. Pissuwan, C.H. Cortie, S.M. Valenzuela, M.B. Cortie. Trends Biotechnol., 28 (4), 207 (2010). DOI: 10.1016/j.tibtech.2009.12.004
  34. Y. Roiter, M. Ornatska, A.R. Rammohan, J. Balakrishnan, D.R. Heine, S. Minko. Nano Lett., 8 (3), 941 (2008). DOI: 10.1021/nl080080l
  35. A. Simon-Deckers, S. Loo, M. Mayne-L'Hermite, N. Herlin-Boime, N. Menguy, C. Reynaud, B. Gouget, M. Carriere. Environ. Sci. Technol., 43 (21), 8423 (2009). DOI: 10.1021/es9016975
  36. Y.N. Slavin, J. Asnis, U.O. Hfeli, H. Bach. J. Nanobiotechnology, 15 (1), 1 (2017). DOI: 10.1186/s12951-017-0308-z
  37. O.A. Lazar, A.S. Nikolov, C.C. Moise, S. Rosoiu, M. Prodana, M. Enachescu. Appl. Surf. Sci., 609, 155289 (2023). DOI: 10.1016/j.apsusc.2022.155289
  38. S. Dittrich, S. Barcikowski, B. Gokce. Opto-Electronic Adv. 4 (1), 200072 (2021). DOI: 10.29026/oea.2021.200072
  39. M.V. Gorlenko, E.A. Chutko, E.S. Churbanova, N.V. Minaev, K.I. Kachesov, L.V. Lysak, S.A. Evlashin, V.S. Cheptsov, A.O. Rybaltovskiy, V.I. Yusupov, et al. J. Biol. Eng., 12 (1), 27 (2018). DOI: 10.1186/s13036-018-0117-4
  40. V.S. Cheptsov, E.S. Churbanova, V.I. Yusupov, M.V. Gorlenko, L.V. Lysak, N.V. Minaev, V.N. Bagratashvili, B.N. Chichkov. Lett. Appl. Microbiol., 67 (6), 544 (2018). DOI: 10.1111/lam.13074
  41. V. Yusupov, S. Churbanov, E. Churbanova, K. Bardakova, A. Antoshin, S. Evlashin, P. Timashev, N. Minaev. Int. J. Bioprinting 6 (3), 1 (2020). DOI: 10.18063/ijb.v6i3.271
  42. E. Mareev, N. Minaev, V. Zhigarkov, V. Yusupov. Photonics, 8 (9), 374 (2021). DOI: 10.3390/photonics8090374
  43. E.V. Grosfeld, V.S. Zhigarkov, A.I. Alexandrov, N.V. Minaev, V.I. Yusupov. Int. J. Mol. Sci., 23 (17),(2022). DOI: 10.3390/ijms23179823
  44. V. Zhigarkov, I. Volchkov, V. Yusupov, B. Chichkov. Nanomaterials, 11 (10), 2584 (2021). DOI: 10.3390/nano11102584
  45. T.V. Kochetkova, K.S. Zayulina, V.S. Zhigarkov, N.V. Minaev, B.N. Chichkov, A.A. Novikov, S.V. Toshchakov, A.G. Elcheninov, I.V. Kublanov. Int. J. Syst. Evol. Microbiol., 70 (2), 1192 (2020). DOI: 10.1099/ijsem.0.003902
Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru