Transportic equations of Maxwell, their fundamental and generalized solutions at constant speed of moving emitters
L.A. Alexeyeva1, I. A. Kanymgaziyeva2
1Institute of Mathematics and Mathematical Modeling, Almaty, Kazakhstan
2L.N.Gumilyov Eurasian National University, Astana, Kazakhstan
Email: alexeeva47@mail.ru

PDF
The article discusses transport solutions of the system of Maxwell's equations under the action of mobile sources of electromagnetic waves moving at a constant speed in a fixed direction. Fundamental and generalized solutions have been constructed for speeds of motion less than the speed of light in the medium, and their regular representation in analytical form. To do this, in the space of Fourier transformftion over coordinates and time, the Green's tensor has been constructed. To restore the originals, the fundamental solutions of the wave equation and properties of Fourier transformation were used. Construction of solutions for arbitrary moving sourthes are based on the property of convolution of fundamental solutions differential equations with right-hand side. Formulas are given for calculating the electric and magnetic intensities for moving emitters of various types, useful for radiodetechnical applications. Keywords: light speed, speed of movement, Mach number, Green's tensor, generalized solutions, electromagnetic waves, radio waves.
  1. J.C. Maxwell. A Treatise on Electricity and Magnetism (Nauka, M., 1989), Vol. 1,2
  2. J. Jackson. Classical Electrodynamics translated from English by G.V. Voskresensky, L.S. Soloviev, ed. by E.L. Burshtein (Mir, M., 1965), 703 p. https://djvu.online/file/AsEuNqMRTseeZ
  3. R. Feynman, R. Leighton., M. Sands. Feynmanovskie lektsii po fizike --- Elektrichestvo i magnetizm (Mir, M., 1965), Vol. 5 (in Russian)
  4. R. Feynman, R. Leighton., M. Sands. Feynmanovskie lektsii po fizike --- Elektrodinamika (Mir, M., 1965), Vol. 6 (in Russian)
  5. L.D. Landau, E.M. Lifshitz. Teoriya polya. Teoreticheskaya fizika (Fizmatlit, M., 2003), Vol. 2 (in Russian)
  6. I.V. Saveliev. Kurs obshchei fiziki. Elektrichestvo (Nauka, M., 1970), Vol. 2 (in Russian)
  7. L.A. Alekseyeva, S.S. Sautbekov. Differentsial'nyye uravneniya, 35 (1), 125 (1999) (in Russian)
  8. L.A. Alekseyeva. Differentsial'nyye uravneniya, 39 (6), 769, (2003) (in Russian)
  9. L.A. Alexeyeva, I.A. Kanymgaziyeva, S.S. Sautbekov. J. Electromagnetic Waves and Applications, 1-14 (2014). http://dx.doi.org/10.1080/09205071.2014.951077
  10. L.A. Alexeyeva, S.S. Sautbekov. Comp. Mathem. Mathem. Phys., 40 (4), 619 (2000)
  11. L.A Alexeyeva. Comp. Mathem. Mathem. Phys., 42 (1), 75 (2002)
  12. S. Sautbekov. J. Magn. Magn. Mater., 484 (15), 403 (2019). https://doi.org/10.1016/j.jmmm.2019.04.012
  13. S.S. Sautbekov, K.N. Baysalova, Y.K. Sirenko. AIP Advances, 11, 105012 (2021)
  14. J. Heras. Phys. Lett., A, 237 (6), 343 (1998). https://doi.org/10.1016/s0375-9601(98)00734-8
  15. J.A. Heras. Am. J. Phys., 62 (12), 1109 (1994). https://doi.org/10.1119/1.17759
  16. J.A. Heras. Phys. Lett. A, 249 (1), 1 (1998). https://doi.org/10.1016/S0375-9601(98)00712-9
  17. O. Dushek, S.V. Kuzmin. Eur. J. Phys., 25 (3), (2004). DOI: 10.1088/0143-0807/25/3/001
  18. V. Hnizdo. Eur. J. Phys., 25, 351 (2004). DOI: 10.1088/0143-0807/25/3/002
  19. V.S. Vladimirov. Uravneniya matematicheskoy fiziki (Nauka, M., 1981) (in Russian)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru