Morphology of nanoporous germanium layers formed by implantation of Cu+, Ag+ and Bi+ ions of various energies
Gavrilova T.P.1, Valeev V. F.1, Nuzhdin V. I.1, Rogov A. M.1, Konovalov D.A.1, Khantimerov S. M.1, Stepanov A. L.1
1Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of RAS, Kazan, Russia
Email: tatyana.gavrilova@gmail.com

PDF
The formation of thin surface amorphous layers of nanoporous Ge of various morphologies due to the high-dose ion implantation of flat single-crystalline c-Ge substrates in the irradiation energy range 10-40 keV was investigated. The implantation was carried out with metal ions of different masses at the current density 5 μA/cm2 and doses of 1.0· 1017 (63Cu+) and 5.0· 1016 (108Ag+ 209Bi+) ion/cm2. The morphology analysis of nanoporous structures was performed using high-resolution scanning electron microscopy. It was found that at low irradiation energies of 10-15 keV in the case of low mass ions such as 63Cu+ and 108Ag+ misoriented thin needle-shaped nanowires were created on the c-Ge surface, and in the case of 209Bi+ ions a porous layer consisting of densely packed intertwined nanowires was formed. At high energies of 30-40 keV, the morphology of nanoporous Ge changed its shape with increasing mass of the implanted ion sequentially from a three-dimensional network structure to a spongy one, consisting of single spatially separated thin intertwined nanowires. Keywords: nanoporous germanium, ion implantation, surface morphology, ion distribution profiles.
  1. D.P. Datta, T. Som. Solar Energy, 223, 367 (2021). DOI: 10.1016/j.solener.2021.05.016
  2. A.L. Stepanov, V.I. Nuzhdin, V.F. Valeev, D.A. Konovalov, A.M. Rogov. Tech. Phys. Lett., 49 (4), 51 (2023). DOI: 10.21883/TPL.2023.04.55878.19466
  3. D. Caudevilla, S. Algaidy, F. Perez-Zenteno, S. Duarte-Cano, R. Garsia-Hemme, E. San Andres, A. del Prado, R. Barrio, I. Torres, E. Garcia-Hemme, D. Pastor. Semicond. Sci. Technol., 37, 124001 (2022). DOI: 10.1088/1361-6641/ac9a67
  4. H.H. Gandhi, D. Pastor, T.T. Tran, S. Kalchmair, L.A. Smile, J.P. Mailoa, R. Milazzo, E. Napolitani, M. Loncar, J.S. Williams, M.J. Aziz, E. Mazur. Phys. Rew. Lett., 14, 64051 (2020). DOI: 10.1103/PhysRevApplied.14.064051
  5. N.G. Rudawski, B.L. Darby, B.R. Yates, K.S. Jones, R.G. Elliman, A.A. Volinsky. Appl. Phys. Lett., 100, 83111 (2012)
  6. T.P. Gavrilova, S.M. Khantimerov, V.I. Nuzhdin, V.F. Valeev, A.M. Rogov, A.L. Stepanov. Tech. Phys. Lett., 48 (4), 70 (2022). DOI: 10.21883/TPL.2022.04.53488.19096
  7. N.G. Rudawski, K.S. Jones. J. Mater. Res., 28 (13), 1633 (2013). DOI: 10.1557/jmr.2013.24
  8. A.L. Stepanov, V.I. Nuzhdin, A.M. Rogov, V.V. Vorobiev, Formirovanie sloev poristogo kremnija i germanija s metallicheskimi nanochasticami (FITs KazNTs RAN, Kazan, 2019) (in Russian)
  9. M.C. Ridgway, T. Bierschenk, R. Giilian, B. Afra, M.D. Rodriguez, L.L. Araujo, A.P. Byrne, N. Kirby, P.H. Pakerinen, F. Djurabekova, K. Nordlund, M. Schleberger, O. Osmani, N. Mendeleev, B. Rethfeld, P. Kluth. Phys. Rev. Lett., 110, 245502 (2013)
  10. S. Hooda, S.A. Khan, B. Satpati, D. Kanjilal, D. Kabiraj. Appl. Phys. Lett., 108, 201603 (2016)
  11. T. Lohner, A. Nemeth, Z. Zolnai, B. Kalas, A. Romanenko, N.Q. Khanh, E. Szilagyi, E. Kotai, E. Agocs, Z. Toth, J. Budai, P. Petrik, M. Fried, I. Barsony, J. Gyulai. Mater. Sci. Semicond. Proc., 152, 107062 (2022). DOI: 10.1016/j.mssp.2022.107062
  12. S. Prucnal, J. Zuk, R. Hubner, J. Duan, M. Wang, K. Pyszniak, A. Drozdziel, M. Turek, S. Zhou. Materials, 13, 1408 (2020). DOI: 10.3390/ma13061408u
  13. S.-Y. Wen, L. He, Y.-H. Zhu, J.-W. Luo. J. Appl. Phys., 133, 45703 (2023). DOI: 10.1063/5.0134924
  14. D. Chowdhury, S. Mondal, M. Secchi, M.C. Giordano, L. Vanzetti, M. Barozzi, M. Bersani, D. Giubertoni, F.B. de Mongeot. Nanotechnol., 33, 305304 (2022). DOI: 10.1088/1361-6528/ac64ae
  15. X. Ou, A. Keller, M. Helm, J. Fassbendr, S. Facko. Phys. Rev. Lett., 111, 16101 (2013). DOI: 10.1103/PhysRevLett.111.016101
  16. Y. Kudriavtsev, A. Hernandez-Zanabria, C. Salinas, R. Asomoza. Vacuum, 177, 109393 (2020). DOI: 10.1016/j.vacuum.2020.109393
  17. Y. Kudriavtsev, R. Asomoza, A. Hernandez, D.Y. Kazantsev, B.Y. Ber, A.N. Gorokhov. J. Vacuum Sci. Technol. A, 38, 53203 (2020). DOI: 10.1116/6.0000262
  18. M.A. Smirnova, A.S. Ivanov, V.I. Bachurin, A.B. Churilov. J. Phys. Conf. Ser., 2086, 12210 (2021). DOI: 10.1088/1742-6596/2086/1/012210
  19. L. Vazquez, A. Redondo-Cubero, K. Lorentz, F.J. Palomares, R. Cuerno. J. Phys. Conens. Matter., 34, 333002 (2022). DOI: 10.1088/1361-648X/ac75a1
  20. J.F. Ziegler, M.D. Ziegler, J.P. Biersack. Nucl. Instr. Meth. Phys. Res. B, 268, 1818 (2010). DOI: 10.1016/j.nimb.2010.02.091
  21. M. Nastasi, J.W. Mayer, J.K. Hirvonen. Ion-solid Interactions (Cambridge Univ., Press: Cambridge, 1996), 540 p
  22. A.M. Rogov, V.I. Nuzhdin, V.F. Valeev, I.A. Romanov, I.M. Klimovich, A.L. Stepanov. Nanotechnologies in Russia, 13 (9-10), 487 (2019)
  23. G.V. Samsonov, Y.N. Bondarev, Germanides (Springer, Berlin, 1969), 163 p
  24. C. Furgeaud, L. Simont, A. Michel, G. Abadias. Acta Mater., 159, 286 (2018). DOI: 10.1016/j.actamat.2018.08.019
  25. E.M. Smith, W.H. Streyer, N. Nader, S. Vangala, G. Grzybowski, R. Soref, D. Wasserman, J.W. Cleary. Opt. Mater. Express, 8 (4), 319998 (2018). DOI: 10.1364/OME.8.000968
  26. C. Shang, L. Hu, D. Luo, K. Kempa, Y. Zhang, G. Zhou, X. Wang, Z. Chen. Adv. Sci., 7, 2002358 (2020). DOI: 10.1002/advs.202002358
  27. M.O. Aboelfotoh, M.A. Borek, J. Narayan. J. Appl. Phys., 87 (1), 365 (2000)
  28. T. Steinbach, J. Wernecke, P. Kluth, M.C. Ridgway, W. Wesch. Phys. Rev. B, 84, 104108 (2011). DOI: 10.1103/PhysRevB.84.104108
  29. S. Hooda, S.A. Khan, B. Satpati, A. Uedono, S. Sellaiyan, K. Asokan, D. Kanjilal, D. Kabiraj. Microporous Mesoporous Mater., 225, 323 (2016). DOI: 10.1016/j.micromeso.2016.01.006
  30. S. Hooda, S.A. Khan, B. Satpati, D. Kanjilal, D. Kabiraj. Appl. Phys. Lett., 108, 201603 (2016). DOI: 10.1063/1.4950710
  31. S. Hooda, S.A. Khan, B. Satpati, D. Stange, D. Buca, M. Bala, C. Pannu, D. Kanjilal, D. Kabiraj. Appl. Phys. A, 122, 227 (2016). DOI: 10.1007/s00339-016-9776-5
  32. A.L. Stepanov, V.V. Vorobev, M.A. Ermakov, V.F. Valeev, V.I. Nuzhdin. Scientific J. Microelectron., 4 (3), 11 (2014)
  33. S. Delsante, G. Borzone, R. Novakovic. Thermochimica Acta, 682, 178432 (2019). DOI: 10.1016/j.tca.2019.178432
  34. D. Manasijevic, L. Balanovic, I. Markovic, M. Gorgievski, U. Stamenkovic, D. Minic, M. Premovic, A. Dordevic, V. Cosovic. J. Thermak. Analysis Calorimetry, 147, 1995 (2022). DOI: 10.1007/s10973-021-10664-y
  35. B.R. Appleton, O.W. Holland, J. Narayan, O.E. Schow III, J.S. Williams, K.T. Short, L. Lawson. Appl. Phys. Lett., 41 (8), 711 (1982). DOI: 10.1063/1.93643
  36. O.W. Holland, B.R. Appleton, J. Narayan. J. Appl. Phys., 54 (5), 2295 (1983). DOI: 10.1063/1.332385
  37. L. Bischoff, W. Pilz, B. Schmidt. Appl. Phys. A, 104, 1153 (2011). DOI: 10.1007/s00339-011-6396-y
  38. Z. Zhang, M. Song, C. Si, W. Cui, Y. Wang. Science, 3, 100070 (2023). DOI: 10.1016/j.esci.2022.07.004
  39. A.L. Stepanov, B.F. Farrakhov, Ya.V. Fattakhov, A.M. Rogov, D.A. Konovalov, V.I. Nuzhdin, V.F. Valeev. Vacuum, 186, 110060 (2021). DOI: 10.1016/j.vacuum.2021.110060
  40. A.L. Stepanov, S.M. Khantimerov, V.I. Nuzhdin, V.F. Valeev, A.M. Rogov. Vacuum, 194, 110552 (2021). DOI: 10.1016/j.vacuum.2021.110552
  41. A.M. Rogov, V.I. Nuzhdin, V.F. Valeev, A.L. Stepanov. Composit. Comm., 19, 6 (2020). DOI: 10.1016/j.coco.2020.01.002
  42. P. Bellon, S.J. Chey, J.E. van Nostrand, M. Ghaly, D.G. Cahill, R.S. Averback. Surf. Sci., 339 (1-2), 135 (1995). DOI: 10.1016/0039-6028(95)00656-7
  43. J.C. Kim, D.G. Cahill, R.S. Averback. Surf. Sci., 574 (2-3), 175 (2005). DOI: 10.1016/j.susc.2004.10.026
  44. I.H. Wilson. J. Appl. Phys., 53, 1698 (1982). DOI: 10.1063/1.221636
  45. I.D. Desnica-Frankovic, P. Dubcek, U.V. Desnica, S. Bernstorff, M.C. Ridgway, C.J. Glover. Nucl. Instr. Meth. Phes. Res. B, 249 (1-2), 114 (2006). DOI: 10.1016/j.nimb.2006.03.093
  46. G. Impellizzeri, L. Romano, L. Bosco, C. Spinella, M.G. Grimaldi. Appl. Phys. Express, 5, 35201 (2012)
  47. L. Romano, G. Impellizzeri, M.V. Tomasello, F. Giannazzo, C. Spinella, M.G. Grimaldi. J. Appl. Phys., 107, 84314 (2010)
  48. I.M. Klimovich, A.L. Stepanov. Lett. Mater., 13 (3), 243 (2023). DOI: 10.22226/2410-3535-2023-3-243-248
  49. A.V. Pavlikov, A.M. Rogov, A.M. Sharafutdinova, A.L. Stepanov. Vacuum, 184, 109881 (2021). DOI: 10.1016/j.vacuum.2020.10988
  50. M. Ghaly, K. Nordlund, R.S. Averback. Philosoph. Magazin, 79, 795 (1999)
  51. C. Cawthorne, E.J. Fulton. Nature, 216, 575 (1967).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru