Cherenkov radiation from relativistic electrons in inclined transparent radiator
Potylitsyn A. P. 1
1Tomsk Polytechnic University, Tomsk, Russia
Email: potylitsyn@tpu.ru

PDF
Based on the polarization currents model, a numerical calculation of the Cherenkov radiation photon yield in the wavelength range 400<λ<850 nm from a silica aerogel radiator with a refractive index n=1.05 and a thickness of 1 mm, located perpendicular to the electron velocity with the Lorentz factor γ=50, was carried out. It was shown that the number of Cherenkov radiation photons propagating in a vacuum near a conical surface with the opening angle theta=18.6o deg coincides with the theoretical estimation from the Tamm-Frank formula. The same method was used to calculate the spectral-angular characteristics of Cherenkov radiation from an inclined quartz radiator (n=1.76) of the same thickness. It was shown that for the radiator inclination angle psi=24.25o deg, part of the Cherenkov cone is extracted into vacuum at an angle thetavac~90o deg relative to the electron momentum. The number of Cherenkov radiation photons in the same spectral range reaches the value of Δ N~5.4 photons/electron, which is 3 orders of magnitude higher than the yield of optical transition radiation, which is used to diagnose beams at modern accelerators. Keywords: Cherenkov radiation, diagnostics, backward transition radiation.
  1. P. Krizan. Nucl. Instrum. Methods Phys. Res. A, 876, 272 (2017). DOI: 10.1016/j.nima.2017.06.009
  2. L. Jakubowski, M.J. Sadowski, J. Zebrowski, M. Rabinski, K. Malinowski, R. Mirowski, Ph. Lotte, J. Gunn, J.-Y. Pascal, G. Colledani, V. Basiuk, M. Goniche, M. Lipa. Rev. Sci. Instrum., 81, 013504 (2010). DOI: 10.1063/1.3280221
  3. A.K. Glaser, R. Zhang, D.J. Gladstone, B.W. Pogue. Physics in Medicine and Biology, 59 (14), 3789 (2014). DOI: 10.1088/0031-9155/59/14/3789
  4. J. Wolfenden, A.S. Alexandrova, F. Jackson, S. Mathisen, G. Morris, Th.H. Pacey, N. Kumar, M. Yadav, A. Jones, C.P. Welsch. Sensors, 23 (4), 2248 (2023). DOI: 10.3390/S23042248
  5. N.S. Vorobyev, P.B. Gornostaev, S.M. Gurov, V.L. Dorokhov, A.E. Zubko, V.I. Lozovoy, O.I. Meshkov, D.A. Nikiforov, A.V. Smirnov, E.V. Shashkov, M.Ya. Schelev. Kvantovaya elektronika, 46 (9), 860 (2016)
  6. K. Nanbu, Y. Saito, H. Saito, S. Kashiagi, F. Hinode, T. Muto, H. Hama. Particles, 1, 305 (2018). DOI: 10.3390/particles1010025
  7. M. Castellano, V.A. Verzilov. Phys. Rev. ST-AB, 1, 062801 (1998). doi.org/10.1103/PhysRevSTAB.1.062801
  8. V.E. Pafomov. Trudy FIAN AN SSSR, 44, 28 (1969)
  9. T. Watanabe, M. Babzien, K. Kusche, V. Yakimenko. AIP Conference Proceedings, 737, 929 (2004). DOI: 10.1063/1.1842644
  10. A.P. Potylitsyn, S.Yu. Gogolev. Pisma v EChAYa, 20 (2[247]), 162 (2023) (in Russian)
  11. D.V. Karlovets, A.P. Potylitsyn. Universal description for different types of polarization radiation. 2010. arXiv: 0908.2336v2 [physics.acc-ph]
  12. S.Yu. Gogolev, A.P. Potylitsyn. Phys. Lett. A, 383 (9), 888 (2019). DOI: 10.1016/j.physleta.2018.12.004
  13. A.P. Potylitsyn, S.Yu. Gogolev. Phys. Part. Nucl. Lett., 16 (2) 127 (2019). DOI: 10.1134/S1547477119020110
  14. I. Tamm. J. Phys. (USSR), 1, 439 (1939)
  15. J.V. Jelley. Cerenkov Radiation and Its Applications (Pergamon, New York, 1958)
  16. Y. Takabayashi, E.I. Fiks, Yu.L. Pivovarov. Phys. Lett. A, 379, 1032 (2015). DOI: 10.1016/j.physleta.2015.01.036
  17. A. Potylitsyn, G. Kube, A. Novokshonov, A. Vukolov, S. Gogolev, B. Alexeev, P. Klag, W. Lauth. Phys. Lett. A., 417, 127680 (2021). DOI: 10.1016/j.physleta.2021.127680

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru