Cherenkov radiation from relativistic electrons in inclined transparent radiator
Based on the polarization currents model, a numerical calculation of the Cherenkov radiation photon yield in the wavelength range 400<λ<850 nm from a silica aerogel radiator with a refractive index n=1.05 and a thickness of 1 mm, located perpendicular to the electron velocity with the Lorentz factor γ=50, was carried out. It was shown that the number of Cherenkov radiation photons propagating in a vacuum near a conical surface with the opening angle theta=18.6o deg coincides with the theoretical estimation from the Tamm-Frank formula. The same method was used to calculate the spectral-angular characteristics of Cherenkov radiation from an inclined quartz radiator (n=1.76) of the same thickness. It was shown that for the radiator inclination angle psi=24.25o deg, part of the Cherenkov cone is extracted into vacuum at an angle thetavac~90o deg relative to the electron momentum. The number of Cherenkov radiation photons in the same spectral range reaches the value of Δ N~5.4 photons/electron, which is 3 orders of magnitude higher than the yield of optical transition radiation, which is used to diagnose beams at modern accelerators. Keywords: Cherenkov radiation, diagnostics, backward transition radiation.
- P. Krizan. Nucl. Instrum. Methods Phys. Res. A, 876, 272 (2017). DOI: 10.1016/j.nima.2017.06.009
- L. Jakubowski, M.J. Sadowski, J. Zebrowski, M. Rabinski, K. Malinowski, R. Mirowski, Ph. Lotte, J. Gunn, J.-Y. Pascal, G. Colledani, V. Basiuk, M. Goniche, M. Lipa. Rev. Sci. Instrum., 81, 013504 (2010). DOI: 10.1063/1.3280221
- A.K. Glaser, R. Zhang, D.J. Gladstone, B.W. Pogue. Physics in Medicine and Biology, 59 (14), 3789 (2014). DOI: 10.1088/0031-9155/59/14/3789
- J. Wolfenden, A.S. Alexandrova, F. Jackson, S. Mathisen, G. Morris, Th.H. Pacey, N. Kumar, M. Yadav, A. Jones, C.P. Welsch. Sensors, 23 (4), 2248 (2023). DOI: 10.3390/S23042248
- N.S. Vorobyev, P.B. Gornostaev, S.M. Gurov, V.L. Dorokhov, A.E. Zubko, V.I. Lozovoy, O.I. Meshkov, D.A. Nikiforov, A.V. Smirnov, E.V. Shashkov, M.Ya. Schelev. Kvantovaya elektronika, 46 (9), 860 (2016)
- K. Nanbu, Y. Saito, H. Saito, S. Kashiagi, F. Hinode, T. Muto, H. Hama. Particles, 1, 305 (2018). DOI: 10.3390/particles1010025
- M. Castellano, V.A. Verzilov. Phys. Rev. ST-AB, 1, 062801 (1998). doi.org/10.1103/PhysRevSTAB.1.062801
- V.E. Pafomov. Trudy FIAN AN SSSR, 44, 28 (1969)
- T. Watanabe, M. Babzien, K. Kusche, V. Yakimenko. AIP Conference Proceedings, 737, 929 (2004). DOI: 10.1063/1.1842644
- A.P. Potylitsyn, S.Yu. Gogolev. Pisma v EChAYa, 20 (2[247]), 162 (2023) (in Russian)
- D.V. Karlovets, A.P. Potylitsyn. Universal description for different types of polarization radiation. 2010. arXiv: 0908.2336v2 [physics.acc-ph]
- S.Yu. Gogolev, A.P. Potylitsyn. Phys. Lett. A, 383 (9), 888 (2019). DOI: 10.1016/j.physleta.2018.12.004
- A.P. Potylitsyn, S.Yu. Gogolev. Phys. Part. Nucl. Lett., 16 (2) 127 (2019). DOI: 10.1134/S1547477119020110
- I. Tamm. J. Phys. (USSR), 1, 439 (1939)
- J.V. Jelley. Cerenkov Radiation and Its Applications (Pergamon, New York, 1958)
- Y. Takabayashi, E.I. Fiks, Yu.L. Pivovarov. Phys. Lett. A, 379, 1032 (2015). DOI: 10.1016/j.physleta.2015.01.036
- A. Potylitsyn, G. Kube, A. Novokshonov, A. Vukolov, S. Gogolev, B. Alexeev, P. Klag, W. Lauth. Phys. Lett. A., 417, 127680 (2021). DOI: 10.1016/j.physleta.2021.127680
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.