Investigation of electrophysical parameters of cold plasma jet in helium and argon
E.V. Milakhina1,2, Gugin P. P.1, Zakrevsky D. E.1,2, Schweigert I. V.3, Biryukov M. M.4, Patrakova E. A.4, Koval O. A.4
1Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
2Novosibirsk State Technical University, Novosibirsk, Russia
3Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
4Institute of Chemical Biology and Fundamental Medicine SB RAS, Novosibirsk, Russia
Email: lena.yelak@gmail.com

PDF
Experimental studies of cold plasma jet generation parameters initiated by sinusoidal voltage in helium and argon in a single geometry of the discharge device and its interaction with model targets - dielectric plate and culture medium with cancer cells - have been carried out. Dependences of amplitude and frequency of current pulses reaching the target and its temperature under different conditions are investigated. The features and optimal parameters (amplitude and frequency of the initiating voltage, geometry of the interaction zone) and doses of helium and argon plasma jet irradiation for suppressing the viability of cancer cells of human lung adenocarcinoma A549 and breast adenocarcinoma MCF7 were determined. Keywords: atmospheric pressure plasma jet, helium, argon
  1. U. Kogelschatz. Plasma Chem. Plasma Proc., 23, 1 (2003). DOI: 10.1023/A:1022470901385
  2. F. Fanelli, F. Fracassi. Surf. Coatings Technol., 322, 174 (2017). DOI: 10.1016/j.surfcoat.2017.05.027
  3. M. Kambara, S. Kawaguchi, H.J. Lee, K. Ikuse, S. Hamaguchi, T. Ohmori, K. Ishikawa. Jpn. J. Appl. Phys., 62, SA0803 (2023). DOI: 10.35848/1347-4065/ac9189
  4. M. Kogoma, K. Tanaka. Rev. Modern Plasma Phys., 5, 3 (2021). DOI: 10.1007/s41614-021-00050-4
  5. K. Takaki, K. Takahashi, N. Hayashi, D. Wang, T. Ohshima. Rev. Modern Plasma Phys., 5, 12 (2021). DOI: 10.1007/s41614-021-00059-9
  6. M. Laroussi, X. Lu, M. Keidar. J. Appl. Phys., 122, 020901 (2017). DOI: 10.1063/1.4993710
  7. Th. von Woedtke, S. Emmert, H.-R. Metelmann, S. Rupf, K.-D. Weltmann. Phys. Plasmas, 27, 070601 (2020). DOI: 10.1088/1361-6595/ac604f
  8. J.C. Harley, N. Suchowerska, D.R. McKenzie. Biophys. Rev., 12, 989 (2020). DOI: 10.1007/s12551-020-00743-z
  9. S. Reuter, Th. von Woedtke, K.-D. Weltmann. J. Phys. D: Appl. Phys., 51, 233001 (2018). DOI: 10.1088/1361-6463/aab3ad
  10. M. Laroussi, T. Akan. Plasma Processes Polymers, 4, 777 (2007). DOI: 10.1002/ppap.200700066
  11. W. Van Gaens, A. Bogaerts. J. Phys. D: Appl. Phys., 46, 275201 (2013). DOI: 10.1088/0022-3727/46/27/275201
  12. A. Shashurin, M. Keidar. Phys. Plasmas, 22, 122002 (2015). DOI: 10.1063/1.4933365
  13. M. Laroussi, S. Bekeschus, M. Keidar, A. Bogaerts, A. Fridman, X. Lu, K. Ostrikov, M. Hori, K. Stapelmann, V. Miller, S. Reuter, Ch. Laux, A. Mesbah, J. Walsh, Ch. Jiang, S.M. Thagard, H. Tanaka, D. Liu, D. Yan, M. Yusupov. IEEE Transactions Radiation Plasma Medical Sci., 6, 127 (2022). DOI: 10.1109/TRPMS.2021.3135118
  14. G.V. Naidis. J. Phys. D: Appl. Phys., 44, 215203 (2011). DOI: 10.1088/0022-3727/44/21/215203
  15. V.I. Arkhipenko, A.A. Kirillov, Y.A. Safronau, L.V. Europ. Phys. J. D, 60, 455 (2010). DOI: 10.1140/epjd/e2010-00266-5
  16. Book of Abstracts, 8th International Workshop on Plasma for Cancer Treatment (Raleigh, NC, USA, 2023)
  17. M. Biryukov, D. Semenov, N. Kryachkova, A. Polyakova, E. Patrakova, O. Troitskaya, E. Milakhina, J. Poletaeva, P. Gugin, E. Ryachikova, D. Zakrevsky, I. Schweigert, O. Koval. Biomolecules, 13, 1672 (2023). DOI: 10.3390/biom13111672
  18. V. Perrotti, V.C.-A. Caponio, L.L. Muzio, E.H. Choi, M.C.-D. Marcantonio, M. Mazzone, N.K. Kaushik, G. Mincione. Intern. J. Molecular Sci., 23, 10238 (2022). DOI: 10.3390/ijms231810238
  19. S.A. Norberg, E. Johnsen, M.J. Kushner. J. Appl. Phys., 118, 013301 (2015). DOI: 10.1063/1.4923345
  20. S.A. Norberg, W. Tian, E. Johnsen, M.J. Kushner. J. Phys. D: Appl. Phys., 47, 475203 (2014). DOI: 10.1088/0022-3727/47/47/475203
  21. P. Viegas, M. Hofmans, O. van Rooij, A. Obrusnik, B. Klarenaar, Z. Bonaventura, O. Guaitella, A. Sobota, A. Bourdon. Plasma Sources Sci. Technol., 29, 095011 (2020). DOI: 10.1088/1361-6595/ac381d
  22. I. Schweigert, S. Vagapov, L. Lin, M. Keidar, IOP J. Phys.: Conf. Series, 1112, 012004 (2018). DOI: 10.1088/1742-6596/1112/1/012004
  23. I. Schweigert, D. Zakrevsky, E. Milakhina, P. Gugin, M. Biryukov, E. Patrakova, O. Koval. Plasma Phys. Controlled Fusion, 64, 044015 (2022). DOI: 10.1088/1361-6587/ac53f1
  24. Li Lin, M. Keidar. Appl. Phys. Rev., 8, 011306 (2021). DOI: 10.1063/5.0022534
  25. I. Schweigert, Dm. Zakrevsky, P. Gugin, E. Yelak, E. Golubitskaya, O. Troitskaya, O. Koval. Appl. Sci., 9, 4528 (2019). DOI: 10.3390/app9214528
  26. O. Troitskaya, E. Golubitskaya, M. Biryukov, M. Varlamov, P. Gugin, E. Milakhina, V. Richter, I. Schweigert, Dm. Zakrevsky, O. Koval. Intern. J. Molecular Sci., 21, 2158 (2020). DOI: 10.3390/ijms21145128
  27. I.V. Schweigert, Dm.E. Zakrevsky, P.P. Gugin, E.V. Milakhina, M.M. Biryukov, M. Keidar, O.A. Koval. Plasma Sources Sci. Technol., 31, 114004 (2022). DOI: 10.1088/1361-6595/aca120
  28. E. Patrakova, M. Biryukov, O. Troitskaya, P. Gugin, E. Milakhina, D. Semenov, J. Poletaeva, E. Ryabchikova, D. Novak, N. Kryachkova, A. Polyakova, M. Zhilnikova, D. Zakrevsky, I. Schweigert, O. Koval. Cells, 12, 290 (2023). DOI: 10.3390/cells12020290
  29. E. Patrakova, M. Birukov, O. Troitskaya, D. Novak, E. Milakhina, P. Gugin, D. Zakrevsky, I. Schweigert. Cytology, 65, 39 (2023). DOI: 10.31857/S004137712301008X
  30. I.V. Shvejgert, D.E. Zakrevsky, E.V. Milakhina, P.P. Gugin, M.M. Biryukov, O.S. Troitskaya, O.A. Koval. Fizika plazmy, 49, 447 (2023). (in Russian). DOI: 10.31857/S0367292122601400
  31. I.A. Zarubin, V.A. Labusov, S.A. Babin. Zavodskaya laboratoriya. Diagnostika materialov, 85, 117 (2019). (in Russian). DOI: 10.26896/1028-6861-2019-85-1-II-117-121
  32. Testo: Thermal imaging camera testo 872. URL: https://www.testo.ru/ru-RU/tieplovizor-testo-872/p/0560-8721
  33. I.V. Schweigert, A.L. Alexandrov, D.E. Zakrevsky. Plasma Sources Sci. Technol., 29, 12LT02 (2020). DOI: 10.1088/1361-6595/abc93f
  34. P.P. Gugin, D.E. Zakrevsky, E.V. Milakhina. Pisma v ZhTF (in Russian) 48, 74 (2022). DOI: 10.21883/PJTF.2021.22.51726.18977
  35. S. Hashimoto, H. Fukuhara, E.J. Szili, C. Kawada, S.-H. Hong, Y. Matsumoto, T. Shirafuji, M. Tsuda, A. Kurabayashi, M. Furihata, H. Furuta, A. Hatta, K. Inoue, J.-S. Oh. Plasma, 6, 103 (2023). DOI: 10.3390/plasma6010009
  36. I.V. Shvejgert, D.E. Zakrevsky, E.V. Milakhina, A.L. Aleksandrov, M.M. Biryukov, O.A. Koval. Fizika plazmy, 49, 1178 (2023). (in Russian). DOI: 10.31857/S0367292123601042

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru