Gas Density Dynamics in Pulsed Interelectrode Discharge Trace
Renev M. E. 1, Dobrov Yu. V. 1, Lashkov V. A. 1, Mashek I. Ch. 1, Khoronzhuk R. S. 1
1St. Petersburg State University, St. Petersburg, Russia
Email: renevme@mail.ru, youdobrov@gmail.com, valerial180150@gmail.com, Igor.Mashek@gmail.com, khoronzhuk@gmail.com

PDF
We present a numerical investigation into the dynamic processes governing the formation of a rarefied region in air at pressures of 10.7 and 101.3 kPa, maintained at temperature of 300 K, influenced by plasma heating from an interelectrode microsecond discharge. Experimental validation of our computational findings was conducted specifically for a pressure of 101.3 kPa. Our estimations reveal a remarkable agreement between the experimentally measured nested energy value of 57±6 mJ and our numerical prediction, which stands at approximately 58 mJ. We observed a significant spatiotemporal congruence in the medium density distribution. Within the interelectrode gap, the gas density diminishes to 0.1 times its initial value within a time frame of 3 μs, predominantly due to the formation of radially expanding flow zones. Notably, gas density experiences a more rapid decline near the electrodes, attributed to the higher local specific heating power and the consequent emergence of near-electrode shock waves. Keywords: validation, plasma, simulation, air, energy deposition.
  1. V.M. Fomin, P.K. Tretyakov, J.P. Taran. Aerospace Sci. Technol., 8 (5), 411 (2004). DOI: 10.1016/j.ast.2004.01.005
  2. P. Bletzinger, B.N. Ganguly, D.V. Wie, A. Garscadden. J. Phys. D: Appl. Phys., 38 (4), R33 (2005). DOI: 10.1088/0022-3727/38/4/R01
  3. A. Russell, H. Zare-Behtash, K. Kontis. J. Electrostat., 80, 34 (2016). DOI: 10.1016/j.elstat.2016.01.004
  4. A.Y. Starikovskiy, N.L. Aleksandrov. Plasma Phys. Reports, 47 (2), 148 (2021). DOI: 10.1134/S1063780X21020069
  5. A.F. Latypov, V.M. Fomin. J. Appl. Mechan. Tech. Phys., 43 (1), 59 (2002)
  6. O.A. Azarova. Aerospace, 2 (1), 118 (2015). DOI: 10.3390/aerospace2010118
  7. O.A. Azarova, V.G. Grudnitsky, Y.F. Kolesnichenko. Matem. Mod., 18 (1), 79 (2006)
  8. O.A. Azarova, A.V. Erofeev, T.A. Lapushkina. Tech. Phys. Lett., 43 (4), 405 (2017). DOI: 10.1134/S1063785017040150
  9. Y.V. Dobrov, V.A. Lashkov, I.Ch. Mashek, R.S. Khoronzhuk. AIP Conference Proceedings (SPb., Russia, 2018), v. 1959, N 1, p. 050009. DOI: 10.1063/1.5034637
  10. Y.V. Dobrov, M.E. Renev, V.A. Lashkov, I.Ch. Mashek, R.S. Khoronzhuk. J. Phys.: Conf. Ser., 1959 (1), 012016 (2021). DOI: 10.1088/1742-6596/1959/1/012016
  11. V.A. Lashkov, A.G. Karpenko, R.S. Khoronzhuk, I.Ch. Mashek. Phys. Plasmas, 23 (5), 052305 (2016). DOI: 10.1063/1.4949524
  12. A.A. Firsov, E. Dolgov, S.B. Leonov. AIAA Scitech 2019 Forum (San Diego, California, 2019), DOI: 10.2514/6.2019-0739
  13. P.Yu. Georgievskij, V.A. Levin. Pis'ma v ZhTF, 14 (8), 684 (1988). (in Russian)
  14. P.Yu. Georgievskij, V.A. Levin. Tr. MIAN SSSR, 186, 197 (1989). (in Russian)
  15. P.Yu. Georgievskij. Vestnik Nizhegorodskogo un-ta im. N.I. Lobachevskogo, 4 (3), 711 (2011). (in Russian)
  16. N. Kianvashrad, D.D. Knight. J. Phys. D: Appl. Phys., 52 (49), 494005 (2019). DOI: 10.1088/1361-6463/ab3fb6
  17. O. Azarova, D.D. Knight, Y. Kolesnichenko. 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition (Orlando, Florida, 2010)
  18. A.I. Saifutdinov, E.V. Kustova, A.G. Karpenko, V.A. Lashkov. Plasma Phys. Rep., 45 (6), 602 (2019). DOI: 10.1134/S1063780X19050106
  19. N.A. Popov. Plasma Phys. Rep., 32 (3), 237 (2006). DOI: 10.1134/S1063780X06030068
  20. T. Piskin, V.A. Podolsky, S.O. Macheret, J. Poggie. J. Phys. D: Appl. Phys., 52 (30), 304002 (2019). DOI: 10.1088/1361-6463/ab1fbe
  21. N.S.J. Braithwaite. Plasma Sources Sci. Technol., 9 (4), 517 (2000)
  22. A.I. Saifutdinov, E.V. Kustova. J. Appl. Phys., 129 (2), 023301 (2021). DOI: 10.1063/5.0031020
  23. Electronic resource. Biagi database. Access mode: www.lxcat.net (retrieved on October 28, 2021)
  24. Electronic resource. IST-Lisbon database. Access mode: www.lxcat.net (retrieved on October 28, 2021)
  25. Electronic resource. Morgan database. Access mode: www.lxcat.net (retrieved on October 28, 2021)
  26. Electronic resource. FLINDERS database. Access mode: www.lxcat.net (retrieved on October 28, 2021)
  27. Electronic resource. Itikawa database. Access mode: www.lxcat.net (retrieved on October 28, 2021)
  28. Yu.P. Rajzer. Fizika gazovogo razryada (Intellekt, Dolgoprudny, 2009), s. 736. (in Russian).
  29. C. Lazarou, A.S. Chiper, C. Anastassiou, I. Topala, I. Mihaila, V. Pohoata, G.E. Georghiou. J. Phys. D: Appl. Phys., 52 (19), 195203 (2019). DOI: 10.1088/1361-6463/ab06cd
  30. C. Park, J.T. Howe, R.L. Jaffe, G.V. Candler. J. Thermophys. Heat Transfer, 8 (1), 9 (1994). DOI: 10.2514/3.496
  31. L.A. Vasil'ev. Tenevye metody (Nauka, Glavnaya red. Fizmatlit, M., 1968), s. 400. (in Russian)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru