V.V. Larionov, E.N. Stepanova Thermoelectric power properties of hydrogenated alloy Ti-6Al-4V subjected to mechanical impact and electron irradiation
Larionov V. V. 1, Stepanova E. N. 1
1Tomsk Polytechnic University, Tomsk, Russia
Email: lvv@tpu.ru, enstepanova@tpu.ru

PDF
The thermoelectric power properties of the Ti-6Al-4V alloy hydrogenated with hydrogen (hydrogen content 0.002 wt.% and 0.23 mass.%), subjected to mechanical rupture (up to 25 to 450 MPa) and irradiation with a pulsed electron flow with an energy of 18 keV to 25 J/cm2 and duration 15 μs. The role of individual Al and V components in relation to changes in the thermoelectric properties of the alloy is noted. Of interest is not only the stabilization of phases, but also the transformation of the alloy under study into a layered medium due to hydrogenation and fixation of hydrogen in traps. The change in the Seebeck coefficient S varies for different conditions in the range (from 0.0011 to 0.0030 mV/K. Due to its stability and strength properties, this kind of alloy can be suitable for use in systems for monitoring the properties of implants and non-traditional energy. Keywords: thermoelectric power, Ti, Al, V, Seebeck coefficient, pulsed electrons, hydrogen.
  1. A.A. Il'in, B.A. Kolachev, V.K. Nosov, A.M. Mamonov. Vidiridnaya tekhnologiya titanovykh splavov (MISiS, M., 2002) (in Russian)
  2. I.M. El-Galy, B.I. Saleh, M.H. Ahmed. SN Appl. Sci., 1, 1378 (2019). DOI: 10.1007/s42452-019-1413-4
  3. A. Bhattacharyya, D. Maurice. Mechan. Mater., 129, 50 (2019). DOI: 10.1016/j.mechmat.2018.11.002
  4. V. Sufiarov, A. Orlov, E. Borisov, I. Polozov, A. Popovich, M. Chukvenkova, A. Soklakov, D. Michaluk. Tech. Phys., 66 (1), 23 (2021). DOI: 10.1134/S1063784221010199
  5. P. Metalnikov, D. Eliezer, G. Ben-Hamu. Mater. Sci. Eng., 811, 141050 (2021). [DOI: 10.1016/j.msea.2021.141050]
  6. R. Silverstein, D. Eliezer. Mater. Characterization., 144, 297 (2018). DOI: 10.1016/j.matchar.2018.07.029
  7. S.P. Xu, V.V. Larionov, V.N. Kudiiarov, R.R. Elman, A.M. Lider. Rus. Metallurgy (Metally), 11, 1276 (2020). DOI: 10.26896/1028-6861-2020-86-8-32-37]
  8. Y. Fukai. The Metal-Hydrogen System (Springer-Verlag Berlin Heidelberg, 2006)
  9. R.S. Laptev, A.M. Lider, Yu.S. Bordulev, V. Kudiiarov, G. Garanin. J. Alloys Compd., 645 (5), 193 (2015). DOI: 10.1016/j.jallcom.2014.12.257
  10. Y.J. Liu, H.L. Wang, W.T. Hou, Y.L. Hao, R. Yang, T.B. Sercombe, L.C. Zhang. Acta Mater., 113 (7), 56 (2016). DOI: 10.1016/j.actamat.2016.04.029]
  11. N.N. Koval, Yu.F. Ivanov. Rus. Phys. J., 51 (5), 505 (2008). DOI: 10.1007/s11182-008-9073-7
  12. Yu.V. Baranov, O.A. Troitsky, Yu.S. Avraamov, A.D. Shlyapin. Fizicheskie osnovy elektroimpulsnoj i elektroplasticheskoj obrabotki i novye materialy (MGIU, M., 2001) (in Russian)
  13. G.P. Grabovetskaya, E.N. Stepanova, I.P. Mishin, O.V. Zabutcheko. Rus. Phys. J., 63 (6), 932 (2020). DOI: 10.1007/s1182-020-02120-5
  14. E.N. Boyangin, O.B. Perevalova, A.V. Panin, S.A. Martynov. Phys. Metals Metallography, 122 (2), 41 (2021). DOI: 10.1134/S0031918X21020034
  15. I.P. Zvyagin. Kineticheskie yavleniya v neuporyadochennykh poluprovodnikakh. (MGU, M., 1984) (in Russian)
  16. S.I. Demishev, M.V. Kondrin, A.A. Pirnin, N.E. Slushko, N.A. Samarin, A.G. Lyapin, D. Biskupsky. Pis'ma v ZhETF, 68 (11), 801 (1998) (in Russian)
  17. N.F. Mott, E.A. Davis. Electronic Processes in Non-Crystalline Material, 2-nd ed. (Oxford University Press, 2012)
  18. B. Yuan, J. Du, X. Zhang, Q. Chen, Yu. Wan, Zh. Xing, H. Zhang. Int. J. Hydrogen Energy, 45 (46), 25567 (2020). DOI: 10.1016/j.ijhydene.2020.06.265
  19. B.A. Kolpachev. Vodorodnaya khrupkost' metallov (Metallurgiya, M., 1985) (in Russian)
  20. X. An, H. Zhang, Te Zhu, Q. Wang, P. Zhang, Ya. Song, M. Wan, T. Yang, X. Cao. Int. J. Hydrogen Energy, 47 (13), 8467 (2022). DOI: 10.1016/j.ijhydene.2021.12.192
  21. A.A. Bugaev, B.P. Zakharchenya, F.A. Chudnovsky. Fazovy perekhod metall-poluprovodnik i ego primenenie (Nauka, L., 1979) (in Russian)
  22. V.N. Andreev, V.A. Klimov. FTT, 49 (12), 2146 (2007). (in Russian)
  23. R.N. Yastrebinsky, V.I. Pavlenko, A.A. Karnauhov, N.I. Cherkashina, A.V. Yastrebinskaya, A.I. Gorodov. Sci. Technol. Nucl. Installations, 2021, ID 6658431, 13 (2021). DOI: 10.1155/2021/6658431
  24. Xu. Sui, V.V. Larionov, A.M. Lider. Tech. Phys., 65 (1), 93 (2020). DOI: 10.1134/S1063784220010260

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru