Heterostructure with additional digital potential barriers for lownoise fieldeffect transistors
Bogdanov S.A.1, Karpov S.N.1, Kotekin R.A.1, Pashkovsky A.B.1
1JSC "RPC "Istok" named after Shokin", Fryazino, Moscow oblast, Russia
Email: solidstate10@mail.ru
The paper presents the first results of a theoretical study of heterostructures for lownoise transistors with donoracceptor doping and systems of alternating thin AlAs/GaAs layers forming additional digital potential barriers. Introduction of digital barriers results in almost complete elimination of the channel of parallel conduction through a widebandgap material and significantly increases the drift velocity overshoot of electrons entering the highfield region, thus bringing the drift velocity overshoot in the relevant heterostructures closer to its theoretical limit implied in the model used, namely the overshoot of electron drift velocity in the undoped bulk material of the channel. Keywords: digital potential barriers, fieldeffect transistor, electronsdrift velocity overshoot.
- T. Mimura, S. Hiyamizi, H. Hashimoto, M. Fukuta, IEEE Trans. Electron Dev., 27 (11), 2197 (1980). DOI: 10.1109/T-ED.1980.20234
- A.S. Tager, A.A. Kalfa, Polevoy tranzistor, a.s. N 897062 (SSSR) (prioritet ot 03.09.1980). (in Russian)
- D.S. Ponomarev, I.S. Vasilevskii, G.B. Galiev, E.A. Klimov, R.A. Khabibullin, V.A. Kulbachinskii, N.A. Uzeeva, Semiconductors, 46 (4), 484 (2012). DOI: 10.1134/S1063782612040173
- A.N. Vinichenko, D.A. Safonov, N.I. Kargin, I.S. Vasil'evskii, Semiconductors, 53 (3), 339 (2019). DOI: 10.1134/S1063782619030205
- F. Heinz, F. Thome, A. Leuther, O. Ambacher, IEEE Trans. Microwave Theory Tech., 69 (8), 3896 (2021). DOI: 10.1109/TMTT.2021.3081710
- H.-B. Jo, J.-M. Baek, D.-Y. Yun, S.-W. Son, J.-H. Lee, T.-W. Kim, D.-H. Kim, T. Tsutsumi, H. Sugiyama, H. Matsuzaki, IEEE Electron Dev. Lett., 39 (11), 1640 (2018). DOI: 10.1109/LED.2018.2871221
- A.N. Vinichenko, V.P. Gladkov, N.I. Kargin, M.N. Strikhanov, I.S. Vasilevskii, Semiconductors, 48 (12), 1619 (2014). DOI: 10.1134/S1063782614120227
- A.A. Kalfa, A.B. Pashkovskii, A.S. Tager, Mikroelektronika, 20 (4), 383 (1991). (in Russian)
- A.B. Pashkovskii, Mikroelektronika, 22 (3), 58 (1993). (in Russian)
- F. Heinz, F. Thome, A. Leuther, O. Ambacher, in 2020 IEEE/MTT-S Int. Microwave Symp. (IMS) (IEEE, 2020), p. 293--296. DOI: 10.1109/IMS30576.2020.9223783
- I. Esho, A.Y. Choi, A.J. Minnicha, J. Appl. Phys., 131 (8), 085111 (2022). DOI: 10.1063/5.0069352
- A.B. Pashkovskii, S.A. Bogdanov, A.K. Bakarov, A.B. Grigorenko, K.S. Zhuravlev, V.G. Lapin, V.M. Lukashin, I.A. Rogachev, E.V. Tereshkin, S.V. Shcherbakov, IEEE Trans. Electron Dev., 68 (1), 53 (2021). DOI: 10.1109/TED.2020.3038373
- A.B. Pashkovskii, S.A. Bogdanov, A.K. Bakarov, K.S. Zhuravlev, V.G. Lapin, V.M. Lukashin, S.N. Karpov, I.A. Rogachev, E.V. Tereshkin, Semiconductors, 57 (1), 20 (2023). DOI: 10.21883/SC.2023.01.55616.3554
- S.A. Bogdanov, S.N. Karpov, A.B. Pashkovskii, Tech. Phys. Lett., 49 (7), 65 (2023). DOI: 10.61011/TPL.2023.07.56449.19591
- A.B. Pashkovskii, A.S. Bogdanov, V.M. Lukashin, S.I. Novikov, Russ. Microelectron., 49 (3), 195 (2020). DOI 10.1134/S1063739720030051
- A.A. Kalfa, FTP, 20 (3), 468 (1986). (in Russian)
- E. Kablukova, K.K. Sabelfeld, D. Protasov, K. Zhuravlev, Monte Carlo Meth. Appl., 29 (4), 307 (2023). DOI: 10.1515/mcma-2023-2019
- A. Cappy, B. Carnez, R. Fauquembergues, G. Salmer, E. Constant, IEEE Trans. Electron Dev., 27 (11), 2158 (1980). DOI: 10.1109/T-ED.1980.20166
- E.V. Tereshkin, Elektronnaya tekhnika. Ser. 1. SVCh-tekhnika, V. 4 (555), 64 (2022). (in Russian)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.