Zhulidin P. A.1, Plastun I. L1, Filin P. D.1, Yakovlev R. Yu.2
1Yuri Gagarin State Technical University of Saratov, Saratov, Russia
2RTA Research Center LLC, Moscow, Russia
Email: zhulidin@mail.ru, inna_pls@mail.ru, filinbox98@gmail.com, yarules@yandex.ru
An analysis of glycine with carboxylated nanodiamonds two-component mixture IR spectra is presented. The study includes interpretation of absorption bands maxima responsible for hydrogen bonding between the main functional groups of glycine and nanodiamond. IR spectra were calculated using the density functional theory (DFT) method using the B3LYP functional. Experimental IR spectra were measured using an IR spectrometer with Fourier transform IR200 Thermo nicolet. Identification of glycine and carboxylated nanodiamonds intermolecular interaction features, manifested in the form of changes in IR spectra, will be important for targeted drug delivery methods modernization, such as glycine, using modified nanodiamonds as carriers. Keywords: glycine, nanodiamonds, IR spectrum, density functional theory, hydrogen bonds.
- R.G. Mendes, P.S. Wrobel, A. Bachmatiuk, J. Sun, T. Gemming, Z. Liu, M.H. Rummeli. J. Mater. Chem. B, 1 (4), 401-428 (2013). DOI: 10.1039/c2tb00085g
- E.I. Bagrii. Adamantany: Poluchenie, svoistva, primenenie (Nauka, M., 1989) (in Russian)
- G.A. Mansoori. Adv. Chem. Phys., 136, 207-258 (2007)
- A.Ya. Vul, O.A. Shenderova. Detonation Nanodiamonds: Science and Applications (CRC Press, Boca Raton, Florida, USA, 2014)
- A. Krueger, D. Lang. Adv. Funct. Mater., 22 (5), 890-906 (2012). DOI: 10.1002/adfm.201102670
- D.H. Jariwala, D. Patel, S. Wairkar. Mater. Sci. Engin. C, 113, 110996 (2020). DOI: 10.1016/j.msec.2020.110996
- D.G. Lim, K.H. Kim, E. Kang, S.H. Lim, J. Ricci, S.K. Sung, M.T. Kwon, S.H. Jeong. Int. J. Nanomedicine, 11, 2381-2395 (2016). DOI: 10.2147/IJN.S104859
- J.W. Steed, J.L. Atwood, Supramolecular Chemistry (Wiley, Chichester, 2000)
- J.M. Say, C. van Vreden, D.J. Reilly, L.J. Brown, J.R. Rabeau, N.J.C. King. Biophys. Rev., 3 (4), 171-184 (2011). DOI: 10.1007/s12551-011-0056-5
- K. Turcheniuk, V.N. Mochalin. Nanotechnology, 28 (25), 252001 (2017). DOI: 10.1088/1361-6528/aa6ae4
- Y. Xing, W. Xiong, L. Zhu, E. Osawa, S. Hussin, L. Dai. ACS Nano, 5 (3), 2376-2384 (2011). DOI: 10.1021/nn200279k
- A.N. Bokarev, I.L. Plastun. Mezhmolekulyarnoe vzaimodeistvie almazopodobnykh nanochastits s lekarstvennymi preparatami i biomolekulami (EBS ASV: Sarat. Gos. Tekh. Univ., Saratov, 2020) (in Russian)
- O. Ermer. J. Am. Chem. Soc., 110 (12), 3747-3754 (1988). DOI: 10.1021/ja00220a005
- I.L. Plastun, A.N. Bokarev, A.A. Zakharov, A.A. Naumov. Fullerenes Nanotubes and Carbon Nanostructures, 28 (3), 183-190 (2020). DOI: 10.1080/1536383X.2019.1686618
- A.D. Salaam, P.T.J. Hwang, A. Poonawalla, H.N. Green, H-W. Jun, D. Dean. Nanotechnology, 25 (42), 425103 (2014). DOI: 10.1088/0957-4484/25/42/425103
- T.B. Toh, D.-K. Lee, W. Hou, L.N. Abdullah, J. Nguyen, D. Ho, E.K.-H. Chow. Molecular Pharmaceutics, 11 (8), 2683-2691 (2014). DOI: 10.1021/mp5001108
- G. Albrecht, R. Corey. J. Am. Chem. Soc., 61, 1087-1103 (1939). DOI: 10.1021/ja01874a028
- Y. Ding, K.J. Krogh-Jespersen. J. Comput. Chem., 17, 338-349 (1996). DOI: 10.1002/(SICI)1096-987X(199602)17:3%3C338::AID-JCC8%3E3.0.CO;2-W
- K. Leung, S. Rempe. J. Chem. Phys., 122 (18), 184506 (2005). DOI: 10.1063/1.1885445
- O.A. Gromova, I.Yu. Torshin, E.I. Gusev, A.A. Nikonov, O.A. Limanova. Trudny Patsient, 8 (4), 25-31 (2010) (in Russian)
- M. Bannai, N. Kawai. J. Pharm. Sci., 118 (2), 145-148 (2012). DOI: 10.1254/jphs.11r04fm
- W. Kohn. Rev. Mod. Phys., 71 (5), 1253-1265 (1999). DOI: 10.1103/RevModPhys.71.1253
- A.D. Becke. J. Chem. Phys., 98 (7), 5648-5652 (1993). DOI: 10.1063/1.464913
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, Jr.T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, W. Wong, C. Gonzalez, J.A. Pople. Gaussian03, Revision B.03 (Gaussian, Inc., Pittsburgh PA, 2003), p. 302
- Avogadro-Free cross-platform molecular editor. [Electronic source]. URL https://avogadro.cc/
- H. Yoshida, A. Ehara, H. Matsuura. Chem. Phys. Lett., 325 (4), 477-483 (2000). DOI: 10.1016/S0009-2614(00)00680-1
- H. Yoshida, K. Takeda, J. Okamura, A. Ehara, H. Matsuura. J. Phys. Chem. A., 106 (14), 3580-3586 (2002). DOI: 10.1021/jp013084m
- I.L. Plastun, P.A. Zhulidin, P.D. Filin, R.Yu. Yakovlev. Opt. Spectrosc., 131 (6), 787-794 (2023). DOI: 10.21883/OS.2023.06.55918.118-23
- A.V. Iogansen. Vodorodnaya svyaz' (Nauka, M., 1981) (in Russian).
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.