Spectral manifestations of carboxylated nanodiamonds complexation with glycine
Zhulidin P. A.1, Plastun I. L1, Filin P. D.1, Yakovlev R. Yu.2
1Yuri Gagarin State Technical University of Saratov, Saratov, Russia
2RTA Research Center LLC, Moscow, Russia
Email: zhulidin@mail.ru, inna_pls@mail.ru, filinbox98@gmail.com, yarules@yandex.ru

PDF
An analysis of glycine with carboxylated nanodiamonds two-component mixture IR spectra is presented. The study includes interpretation of absorption bands maxima responsible for hydrogen bonding between the main functional groups of glycine and nanodiamond. IR spectra were calculated using the density functional theory (DFT) method using the B3LYP functional. Experimental IR spectra were measured using an IR spectrometer with Fourier transform IR200 Thermo nicolet. Identification of glycine and carboxylated nanodiamonds intermolecular interaction features, manifested in the form of changes in IR spectra, will be important for targeted drug delivery methods modernization, such as glycine, using modified nanodiamonds as carriers. Keywords: glycine, nanodiamonds, IR spectrum, density functional theory, hydrogen bonds.
  1. R.G. Mendes, P.S. Wrobel, A. Bachmatiuk, J. Sun, T. Gemming, Z. Liu, M.H. Rummeli. J. Mater. Chem. B, 1 (4), 401-428 (2013). DOI: 10.1039/c2tb00085g
  2. E.I. Bagrii. Adamantany: Poluchenie, svoistva, primenenie (Nauka, M., 1989) (in Russian)
  3. G.A. Mansoori. Adv. Chem. Phys., 136, 207-258 (2007)
  4. A.Ya. Vul, O.A. Shenderova. Detonation Nanodiamonds: Science and Applications (CRC Press, Boca Raton, Florida, USA, 2014)
  5. A. Krueger, D. Lang. Adv. Funct. Mater., 22 (5), 890-906 (2012). DOI: 10.1002/adfm.201102670
  6. D.H. Jariwala, D. Patel, S. Wairkar. Mater. Sci. Engin. C, 113, 110996 (2020). DOI: 10.1016/j.msec.2020.110996
  7. D.G. Lim, K.H. Kim, E. Kang, S.H. Lim, J. Ricci, S.K. Sung, M.T. Kwon, S.H. Jeong. Int. J. Nanomedicine, 11, 2381-2395 (2016). DOI: 10.2147/IJN.S104859
  8. J.W. Steed, J.L. Atwood, Supramolecular Chemistry (Wiley, Chichester, 2000)
  9. J.M. Say, C. van Vreden, D.J. Reilly, L.J. Brown, J.R. Rabeau, N.J.C. King. Biophys. Rev., 3 (4), 171-184 (2011). DOI: 10.1007/s12551-011-0056-5
  10. K. Turcheniuk, V.N. Mochalin. Nanotechnology, 28 (25), 252001 (2017). DOI: 10.1088/1361-6528/aa6ae4
  11. Y. Xing, W. Xiong, L. Zhu, E. Osawa, S. Hussin, L. Dai. ACS Nano, 5 (3), 2376-2384 (2011). DOI: 10.1021/nn200279k
  12. A.N. Bokarev, I.L. Plastun. Mezhmolekulyarnoe vzaimodeistvie almazopodobnykh nanochastits s lekarstvennymi preparatami i biomolekulami (EBS ASV: Sarat. Gos. Tekh. Univ., Saratov, 2020) (in Russian)
  13. O. Ermer. J. Am. Chem. Soc., 110 (12), 3747-3754 (1988). DOI: 10.1021/ja00220a005
  14. I.L. Plastun, A.N. Bokarev, A.A. Zakharov, A.A. Naumov. Fullerenes Nanotubes and Carbon Nanostructures, 28 (3), 183-190 (2020). DOI: 10.1080/1536383X.2019.1686618
  15. A.D. Salaam, P.T.J. Hwang, A. Poonawalla, H.N. Green, H-W. Jun, D. Dean. Nanotechnology, 25 (42), 425103 (2014). DOI: 10.1088/0957-4484/25/42/425103
  16. T.B. Toh, D.-K. Lee, W. Hou, L.N. Abdullah, J. Nguyen, D. Ho, E.K.-H. Chow. Molecular Pharmaceutics, 11 (8), 2683-2691 (2014). DOI: 10.1021/mp5001108
  17. G. Albrecht, R. Corey. J. Am. Chem. Soc., 61, 1087-1103 (1939). DOI: 10.1021/ja01874a028
  18. Y. Ding, K.J. Krogh-Jespersen. J. Comput. Chem., 17, 338-349 (1996). DOI: 10.1002/(SICI)1096-987X(199602)17:3%3C338::AID-JCC8%3E3.0.CO;2-W
  19. K. Leung, S. Rempe. J. Chem. Phys., 122 (18), 184506 (2005). DOI: 10.1063/1.1885445
  20. O.A. Gromova, I.Yu. Torshin, E.I. Gusev, A.A. Nikonov, O.A. Limanova. Trudny Patsient, 8 (4), 25-31 (2010) (in Russian)
  21. M. Bannai, N. Kawai. J. Pharm. Sci., 118 (2), 145-148 (2012). DOI: 10.1254/jphs.11r04fm
  22. W. Kohn. Rev. Mod. Phys., 71 (5), 1253-1265 (1999). DOI: 10.1103/RevModPhys.71.1253
  23. A.D. Becke. J. Chem. Phys., 98 (7), 5648-5652 (1993). DOI: 10.1063/1.464913
  24. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, Jr.T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, W. Wong, C. Gonzalez, J.A. Pople. Gaussian03, Revision B.03 (Gaussian, Inc., Pittsburgh PA, 2003), p. 302
  25. Avogadro-Free cross-platform molecular editor. [Electronic source]. URL https://avogadro.cc/
  26. H. Yoshida, A. Ehara, H. Matsuura. Chem. Phys. Lett., 325 (4), 477-483 (2000). DOI: 10.1016/S0009-2614(00)00680-1
  27. H. Yoshida, K. Takeda, J. Okamura, A. Ehara, H. Matsuura. J. Phys. Chem. A., 106 (14), 3580-3586 (2002). DOI: 10.1021/jp013084m
  28. I.L. Plastun, P.A. Zhulidin, P.D. Filin, R.Yu. Yakovlev. Opt. Spectrosc., 131 (6), 787-794 (2023). DOI: 10.21883/OS.2023.06.55918.118-23
  29. A.V. Iogansen. Vodorodnaya svyaz' (Nauka, M., 1981) (in Russian).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru