High-frequency multilayer diffraction Si-gratings with a low blaze angle --- fabrication
Mokhov D. V. 1, Berezovskaya T. N.1, Pirogov E. V.1, Shubina K. Yu.1, Prasolov N. D. 2, Zorina M. V.3, Garakhin S. A. 3, Pleshkov R. S.3, Chkhalo N. I. 3, Dashkov A. S.1,4, Kostromin N. A.1,4, Goray. L. I.1,4,5,6, Bouravleuv A. D.2,4,5,6
1Alferov Federal State Budgetary Institution of Higher Education and Science Saint Petersburg National Research Academic University of the Russian Academy of Sciences, St. Petersburg, Russia
2Ioffe Institute, St. Petersburg, Russia
3 Institute for physics of microstructure RAS, Nizhny Novgorod, Russia
4St. Petersburg State Electrotechnical University “LETI", St. Petersburg, Russia
5Institute for Analytical Instrumentation of the Russian Academy of Sciences, Saint Petersburg, Russia
6AN HEO "University associated with IA EAEC", Saint-Petersburg, Russia
Email: dm_mokhov@rambler.ru, bertana@spbau.ru, zzzavr@gmail.com, rein.raus.2010@gmail.com, lig@pcgrate.com

PDF
High-frequency X-ray diffraction gratings with a groove density of 2500 mm-1 and a low blaze angle were fabricated on Si(111)1.8o wafers using electron beam lithography and wet anisotropic etching. A multilayer Mo/Be coating consisting of 40 bilayers for a wavelength of 11.3 nm was deposited by magnetron sputtering. The groove profile during the fabrication of the gratings was monitored using atomic force microscopy and scanning electron microscopy. The averaged and random groove profiles and high- and mid-frequency roughness values of the best diffraction gratings obtained with atomic force microscopy will be used for subsequent simulation of the diffraction efficiency using the PCGrateTM code. Keywords: Blazed diffraction Si-grating, low blaze angle, multilayer Mo/Be coating, electron beam lithography, wet anisotropic etching, magnetron sputtering, reflective facet roughness, atomic force microscopy, scanning electron microscopy, extreme UV.
  1. L.J.P. Ament, M. van Veenendaal, T. Devereaux, J.P. Hill, J. van den Brink. Rev. Mod. Phys., 83, 705 (2011). DOI: 10.1103/RevModPhys.83.705
  2. L. Goray, W. Jark, D. Eichert. J. Synchrotron Radiation, 25 (6), 1683 (2018). DOI: 10.1107/S1600577518012419
  3. D.L. Voronov, P. Lum, P. Naulleau, E.M. Gullikson, A.V. Fedorov, H.A. Padmore. Appl. Phys. Lett., 109, 043112 (2016). DOI: 10.1063/1.4960203
  4. M.P. Kowalski, R.G. Cruddace, K.F. Heidemann, R. Lenke, H. Kierey, T.W. Barbee, W.R. Hunter. Opt. Lett., 29 (24), 2914 (2004)
  5. H. Lin, L. Zhang, L. Li, Ch. Jin, H. Zhou, T. Huo. Opt. Lett., 33 (5), 485 (2008). DOI: 10.1364/ol.33.000485
  6. F. Salmassi, P.P. Naulleau, E.M. Gullikson, D.L. Olynick, J.A. Liddle. J. Vacuum Sci. Technol. A Vacuum Surfaces and Films, 24 (4), 1136 (2006). DOI: 10.1116/1.2212435
  7. D.L. Voronov, E.H. Anderson, R. Cambie, F. Salmassi, E.M. Gullikson, V.V. Yashchuk, H.A. Padmore, M. Ahn, C.-H. Chang, R.K. Heilmann, M.L. Schattenburg. Proc. SPIE, 7448, 74480J (2009). DOI: 10.1117/12.826921
  8. L.I. Goray, T.N. Berezovskaya, D.V. Mokhov, V.A. Sharov, K.Yu. Shubina, E.V. Pirogov, A.S. Dashkov, A.V. Nashchekin, M.V. Zorina, M.M. Barysheva, S.A. Garakhin, S.Yu. Zuev, N.I. Chkhalo. Bull. Lebedev Phys. Institute, 50 (2), S250 (2023). DOI: 10.3103/S1068335623140063
  9. D.L. Voronov, R. Cambie, E.M. Gullikson, V.V. Yashchuk, H.A. Padmore, Yu.P. Pershin, A.G. Ponomarenko, V.V. Kondratenko. Proc. SPIE, 7077, 707708-1 (2008). DOI: 10.1117/12.795377
  10. D.L. Voronov, T. Warwick, H.A. Padmore. Opt. Lett., 39 (21), 6134 (2014). DOI: 10.1364/OL.39.006134
  11. A.H.K. Mahmoud, S. de Rossi, E. Meltchakov, B. Capitanio, M. Thomasset, M. Vallet, E. Heripre, F. Delmotte. Opt. Express, 30 (21), 38319 (2022). DOI: 10.1364/OE.468568
  12. A. Sokolov, Q. Huang, F. Senf, J. Feng, S. Lemke, S. Alimov, J. Knedel, T. Zeschke, O. Kutz, T. Seliger, G. Gwalt, F. Schafers, F. Siewert, I.V. KozhevnikoV, R. Qi, Z. Zhang, W. Li, Z. Wang. Opt. Express, 27 (12), 16833 (2019). DOI: 10.1364/OE.27.016833
  13. D.L. Voronov, M. Ahn, E.H. Anderson, R. Cambie, Ch.-H. Chang, L.I. Goray, E.M. Gullikson, R.K. Heilmann, F. Salmassi, M.L. Schattenburg, T. Warwick, V.V. Yashchuk, H.A. Padmore. Proc. SPIE, 7802, 780207 (2010). DOI: 10.1117/12.861287
  14. S. Park, D.L. Voronov, E.M. Gullikson, F. Salmassi, H.A. Padmore. Proc. SPIE, 11837, 118370I (2021). DOI: 10.1117/12.2596269
  15. D.L. Voronov, S. Park, E.M. Gullikson, F. Salmassi, H.A. Padmore. Opt. Express, 31 (16), 26724 (2023). DOI: 10.1364/OE.495374
  16. L.I. Goray, T.N. Berezovskaya, D.V. Mokhov, V.A. Sharov, K.Yu. Shubina, E.V. Pirogov, A.S. Dashkov. J. Surf. Investigation: X-ray, Synchrotron and Neutron Techniques, 17 (1), S104 (2023). DOI: 10.1134/S1027451023070145
  17. L.I. Goray, V.A. Sharov, D.V. Mokhov, T.N. Berezovskaya, K.Yu. Shubina, E.V. Pirogov, A.S. Dashkov, A.D. Bouravleuv. Tech. Phys., 68 (7), 797 (2023). DOI: 10.61011/TP.2023.07.56619.66-23
  18. L.I. Goray, T.N. Berezovskaya, D.V. Mokhov, V.A. Sharov, K.Yu. Shubina, E.V. Pirogov, A.S. Dashkov. Tech. Phys., 91 (10), 1531 (2021). DOI: 10.61011/TP.2024.07.58809.120-24
  19. D.L. Voronov, E.H. Anderson, R. Cambie, F. Salmassi, E.M. Gullikson, V.V. Yashchuk, H.A. Padmore, M. Ahn, C.-H. Chang, R.K. Heilmann, M.L. Schattenburg. Proc. SPIE, 7448, 74480J (2009). DOI: 10.1117/12.826921
  20. D.V. Mokhov, T.N. Berezovskaya, K.Yu. Shubina, E.V. Pirogov, A.V. Nashchekin, V.A. Sharov, L.I. Goray. Tech. Phys., 92 (8), 1009 (2022). DOI: 10.61011/TP.2024.07.58809.120-24
  21. S.A. Garakhin, N.I. Chkhalo, I.A. Kas'kov, A.Ya. Lopatin, I.V. Malyshev, A.N. Nechay, A.E. Pestov, V.N. Polkovnikov, N.N. Salashchenko, M.V. Svechnikov, N.N. Tsybin, I.G. Zabrodin, S.Yu. Zuev. Rev. Sci. Instrum., 91 (6), 063103 (2020)
  22. Electronic source. Available at: www.pcgrate.com
  23. L.I. Goray, A.S. Dashkov, N.A. Kostromin, D.V. Mokhov, T.N. Berezovskaya, E.V. Pirogov, K.Yu. Shubina, V.A. Sharov, N.D. Prasolov, M.V. Zorina, S.A. Garakhin, R.S. Pleshkov, N.I. Chkhalo, A.D. Buravlev. ZhTF, 94 (7), 2024 (in Russian)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru