High-frequency low-blaze-angle Mo/Be diffraction gratings --- efficiency study
Goray L. I.
1,2,3,4, Dashkov A. S.
1,2, Kostromin N. A.
1,2, Mokhov D. V.
2, Berezovskaya T. N.
2, Shubina K. Yu.
2, Pirogov E. V.
2, Sharov V. A.
5, Garakhin S. A.
6, Zorina M. V.
6, Pleshkov R. S.
6, Chkhalo N. I.
6, Bouravleuv A.D.
1,3,4,51St. Petersburg State Electrotechnical University “LETI", St. Petersburg, Russia
2Alferov Federal State Budgetary Institution of Higher Education and Science Saint Petersburg National Research Academic University of the Russian Academy of Sciences, St. Petersburg, Russia
3Institute for Analytical Instrumentation of the Russian Academy of Sciences, Saint Petersburg, Russia
4AN HEO "University associated with IA EAEC", Saint-Petersburg, Russia
5Ioffe Institute, St. Petersburg, Russia
6 Institute for physics of microstructure RAS, Nizhny Novgorod, Russia
Email: lig@pcgrate.com, daskov.alexander.om@gmail.com, nik.kostromin.00@inbox.ru
The paper presents the results of studies of the diffraction efficiency of blazed gratings, carried out by modelling in the PCGrateTM code using groove profile shapes obtained by atomic force microscopy and measurements on the laboratory reflectometer with a high-resolution Czerny-Turner spectrometer. High-frequency diffraction gratings with a density of 2500 mm-1 and a small inclination angle of the reflecting facet were fabricated on Si(111)1.8o wafers using electron beam lithography and anisotropic wet etching. A grating with a blaze angle of ~1.7o, coated with 40 Mo/Be bilayers, demonstrated in the classical mount an absolute diffraction efficiency of ~ 38% in minus second order at an incident angle of 3o of unpolarized radiation at a wavelength of 11.3 nm. Taking into account the measured reflectance of the multilayer coating ~ 0.6, the maximum relative (grating) efficiency was ~ 63%. Keywords: blazed diffraction Si-grating, triangular groove profile, low blaze angle, multilayer Mo/Be coating, diffraction efficiency modelling, boundary integral equations, reflective facet roughness, atomic force microscopy, Monte-Carlo method, extreme UV.
- L. Goray, W. Jark, D. Eichert. J. Synchrotron Rad, 25 (6), 1683 (2018). DOI: 10.1107/S1600577518012419
- D.L. Voronov, L.I. Goray, T. Warwick, V.V. Yashchuk, H.A. Padmore. Opt. Express, 23 (4), 4771 (2015). DOI: 10.1364/OE.23.004771
- D.L. Voronov, E.M. Gullikson, F. Salmassi, T. Warwick, H.A. Padmore. Opt. Lett., 39 (11), 3157 (2014). DOI: 10.1364/OL.39.003157
- D.L. Voronov, F. Salmassi, J. Meyer-Ilse, E.M. Gullikson, T. Warwick, H.A. Padmore. Opt. Express, 24 (11), 11334 (2016). DOI: 10.1364/OE.24.011334
- A. Sokolov, Q. Huang, F. Senf, J. Feng, S. Lemke, S. Alimov, J. Knedel, T. Zeschke, O. Kutz, T. Seliger, G. Gwalt, F. Schafers, F. Siewert, I. Kozhevnikov, R. Qi, Z. Zhang, W. Li, Z. Wang. Opt. Express, 27 (12), 16833 (2019). DOI: 10.1364/OE.27.016833
- N.I. Chkhalo, N.N. Salashchenko. AIP Advances, 3 (8), 082130 (2013). DOI: 10.1063/1.4820354
- M.V. Svechnikov, N.I. Chkhalo, S.A. Gusev, A.N. Nechay, D.E. Pariev, A.E. Pestov, V.N. Polkovnikov, D.A. Tatarskiy, N.N. Salashchenko, F. Schafers, M.G. Sertsu, A. Sokolov, Y.A. Vainer, M.V. Zorina. Opt. Express, 26 (26), 33718 (2018). DOI: 10.1364/OE.26.033718
- N.I. Chkhalo, S.A. Garakhin, A.Ya. Lopatin, A.N. Nechay, A.E. Pestov, V.N. Polkovnikov, N.N. Salashchenko, N.N. Tsybin, S.Yu. Zuev. AIP Advances, 8 (10), 105003 (2018). DOI: 10.1063/1.5048288
- V.N. Polkovnikov, N.I. Chkhalo, R.S. Pleshkov, N.N. Salashchenko, F. Schafers, M.G. Sertsu, A. Sokolov, M.V. Svechnikov, S.Yu. Zuev. Opt. Lett., 44 (2), 263 (2019). DOI: 10.1364/OL.44.000263
- L.I. Goray, T.N. Berezovskaya, D.V. Mokhov, K.Yu. Shubina, E.V. Pirogov, V.A. Sharov, A.S. Dashkov, N.A. Kostromin, M.V. Zorina, M.M. Barysheva, S.A. Garakhin, S.Yu. zuev, K.V. Nikolaev, S.N. Yakunin, B.S.Roshchin, N.I. Chkhalo, V.E. Asadchikov, A.D. Buravlev. Sbornik tez.konf. Elektronno-luchevye tekhnologii i rentgenovskaya optika v mikroelektronika" KELT-23 (Chernigolovka, Rossiya, 2023), s. 219
- D.V. Mokhov, T.N. Berezovskaya, K.Yu. Shubina, E.V. Pirogov, A.V. Nashchekin, V.A. Sharov, L.I. Goray. Tech. Phys., 92 (8), 1009 (2022). DOI: 10.21883/TP.2022.08.54564.74-22
- Electronic source. Available at: https://henke.lbl.gov/optical_constants/
- D.V. Mokhov, T.N. Berezovskaya, E.V. Pirogov, K.Yu. Shubina, N.D. Prasolov, M.V. Zorina, S.A. Garakhin, R.S. Pleshkov, N.I. Chkhalo, A.S. Dashkov, N.A. Kostromin, L.I. Goray, A.D. Buravlev. ZhTF, 94 (7), 2024 (in Russian)
- F.M. Gerasimov, E.A. Yakovlev. Current Trends in Spectroscopy Technology, ed. by S.G. Rautian (Nauka, Novosibirsk, 1982, in Russian)
- E.G. Loewen, E. Popov. Diffraction Gratings and Applications (CRC Press, 2018), 630 p
- L.I. Gorai. Bull. Russian Academy Sciences. Physics, 69 (2), 231 (2005)
- L. Goray. J. Synchrotron Rad., 28 (1), 196 (2021). DOI: 10.1107/S160057752001440X
- L.I. Goray, G. Schmidt. Gratings: Theory and Numerical Applications (Presses Universitaires de Provence, Marcel, 2014), Ch. 12
- L.I. Goray, S.Yu. Sadov. Komp'yuternaya programma PCGrateTM. URL: www.pcgrate.com
- D.P. Kroese, T. Taimre, Z.I. Botev. Handbook of Monte Carlo Methods (Wiley, 2011), 772 p
- H. Marlowe, R.L. McEntaffer, C.T. Deroo, D.M. Miles, J.H. Tutt, L.I. Goray, F. Scholze, A.F. Herrero, C. Laubis, V. Soltwisch. Appl. Opt., 55 (21), 5548 (2016)
- L.I. Goray, A.S. Dashkov, N.A. Kostromin, D.A. Barykin, 2023 Days on Diffraction (DD), Proc. IEEE, 101 (2023). DOI: 10.1109/DD58728.2023.10325796
- L.I. Goray, V.A. Sharov, D.V. Mokhov, T.N. Berezovskaya, K.Yu. Shubina, E.V. Pirogov, A.S. Dashkov, A.D. Bouravleuv. Tech. Phys., 68 (7), 797 (2023). DOI: 10.61011/TP.2023.07.56619.66-23
- S.A. Garakhin, N.I. Chkhalo, I.A. Kas'kov, A.Ya. Lopatin, I.V. Malyshev, A.N. Nechay, A.E. Pestov, V.N. Polkovnikov, N.N. Salashchenko, M.V. Svechnikov, N.N. Tsybin, I.G. Zabrodin, S.Yu. Zuev. Rev. Sci. Instrum., 91 (6), 063103 (2020). DOI: 10.1063/1.5144489
- L.I. Goray, T.N. Berezovskaya, D.V. Mokhov, V.A. Sharov, K.Yu. Shubina, E.V. Pirogov, A.S. Dashkov, A.V. Nashchekin, M.V. Zorina, M.M. Barysheva, S.A. Garakhin, S.Yu. Zuev, N.I. Chkhalo. Bull. Lebedev Phys. Inst., 50 (2), S250 (2023). DOI: 10.3103/S1068335623140063
- L.I. Goray, T.N. Berezovskaya, D.V. Mokhov, V.A. Sharov, K.Yu. Shubina, E.V. Pirogov, A.S. Dashkov. J. Surf. Invest., 17 (1), S104 (2023). DOI: 10.1134/S1027451023070145
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.