Study of growth conditions effect on GaN doping with carbon from propane and methane
Lundin W. V.1, Zavarin E. E. 1, Sakharov A. V.1, Kazantsev D. Yu.1, Ber B. Ya.1, Tsatsulnikov A. F.2
1Ioffe Institute, St. Petersburg, Russia
2Submicron Heterostructures for Microelectronics, Research and Engineering Center, Russian Academy of Sciences, St. Petersburg, Russia
Email: lundin.vpegroup@mail.ioffe.ru

PDF
A comprehensive study of intentional GaN carbon doping from propane and methane during MOVPE was performed in a wide range of growth conditions using both hydrogen and nitrogen carrier gas with growth rate varies from 0.8 to 62 μm/h. Carbon concentration raise with growth rate was revealed both precursors. For the same conditions carbon incorporation from methane is about one order lower than from propane. However, methane produced by trimethylgallium pyrolysis was revealed to be an important source for background carbon incorporation, especially at high growth rate. Character of the dependencies of carbon incorporation on concentration of carbon precursor and ammonia is significantly different for nitrogen and hydrogen carrier gases. Temperature dependencies of carbon incorporation from methane and background incorporation are similar while propane is more effective precursor at high temperature. Keywords: Doping, Metalorganic vapor phase epitaxy, Nitrides.
  1. W.Z. Wang, S.L. Selvaraj, K.T. Win, S.B. Dolmanan, T. Bhat, N. Yakovlev, S. Tripathy, G.Q. Lo. J. Electron. Mater., 44 (10), 3272 (2015). https://doi.org/10.1007/s11664-015-3832-3
  2. P. Gamarra, C. Lacam, M. Tordjman, J. Splettstosser, B. Schauwecker, M.-A. di Forte-Poisson. J. Cryst. Growth, 414, 232 (2015). https://doi.org/10.1016/j.jcrysgro.2014.10.025
  3. D.S. Kim, C.H. Won, H.S. Kang, Y.J. Kim, Y.T. Kim, I.M. Kang, J.-H. Lee. Semicond. Sci. Technol., 30 (3), 035010 (2015). https://doi.org/10.1088/0268-1242/30/3/035010
  4. S. Kato, Y. Satoh, H. Sasaki, I. Masayuki, S. Yoshida. J. Cryst. Growth, 298, 831 (2007). https://doi.org/10.1016/j.jcrysgro.2006.10.192
  5. K. Harrouche, S. Venkatachalam, F. Grandpierron, E. Okada, F. Medjdoub. Appl. Phys. Express, 15, 116504 (2022). https://doi.org/10.35848/1882-0786/ac9c46
  6. S. Wu, X. Yang, Z. Wang, Z. Ouyang, H. Huang, Q. Zhang, Q. Shang, Z. Shen, F. Xu, X. Wang, W. Ge, B. Shen. Appl. Phys. Lett., 120 (24), 242101 (2022). https://doi.org/10.1063/5.0093514
  7. G. Verzellesi, L. Morassi, G. Meneghesso, M. Meneghini, E. Zanoni, G. Pozzovivo, S. Lavanga, T. Detzel, O. Haberlen, G. Curatola. IEEE Electron Dev. Lett., 35 (4), 443 (2014). https://doi.org/10.1109/LED.2014.2304680
  8. X. Li, O. Danielsson, H. Pedersen, E. Janzen, U. Forsberg. J. Vac. Sci. Technol., B 33, 021208 (2015). http://dx.doi.org/10.1116/1.4914316
  9. X. Li, J. Bergsten, D. Nilsson, O. Danielsson, H. Pedersen, N. Rorsman, E. Janzen, U. Forsberg. Appl. Phys. Lett., 107, 262105 (2015). http://dx.doi.org/10.1063/1.4937575
  10. J. Bergsten, X. Li, D. Nilsson, O. Danielsson, H. Pedersen, E. Janzen, U. Forsberg, N. Rorsman. Jpn. J. Appl. Phys., 55, 05FK02 (2016). http://doi.org/10.7567/JJAP.55.05FK02
  11. W.V. Lundin, E.E. Zavarin, P.N. Brunkov, M.A. Yagovkina, A.V. Sakharov, M.A. Sinitsyn, B.Ya. Ber, D.Yu. Kazantsev, A.F. Tsatsulnikov. Tech. Phys. Lett. 42 (5), 539 (2016). https://doi.org/10.1134/S106378501605028X
  12. H. Yacoub, C. Mauder, S. Leone, M. Eickelkamp, D. Fahle, M. Heuken, H. Kalisch, A. Vescan. IEEE Trans. Electron Dev., 64 (3), 991 (2017). https://doi.org/10.1109/TED.2017.2647841
  13. H. Yacoub, Th. Zweipfennig, G. Lukens, H. Behmenburg, D. Fahle, M. Eickelkamp, M. Heuken, H. Kalisch, A. Vescan. IEEE Trans. Electron Dev., 65 (8), 3192 (2018). https://doi.org/10.1109/TED.2018.2850066
  14. X. Li, S. Zhu. J. Phys.: Conf. Ser., 2011, 012083 (2021). https://doi.org/10.1088/1742-6596/2011/1/012083
  15. L. Zhang, Z. Dong, X. Deng, X. Zhou, K. Xu, F. Yang, G. Yu, X. Zhang, Y. Fan, Z. Zeng, Z. Wei. B. Zhang. Mater. Lett., 345, 134475 (2023). https://doi.org/10.1016/j.matlet.2023.134475
  16. M.E. Zvanut, S. Paudel, E.R. Glaser, M. Iwinska, T. Sochacki, M. Bockowski. J. Electron. Mater., 48, 2226 (2019). https://doi.org/10.1007/s11664-019-07016-w
  17. Y. Lai, D. Wang, Q. Kong, X. Luo, J. Tang, R. Liu, F. Hou, X. Wang, T.J. Baker. J. Cryst. Growth, 573, 126216 (2021). https://doi.org/10.1016/j.jcrysgro.2021.126216
  18. Q. Liu, M. Zajac, M. Iwinska, S. Wang, W. Zhuang, M. Bockowski, X. Wang. Appl. Phys. Lett., 121 (17), 172103 (2022). https://doi.org/10.1063/5.0118250
  19. R. Zhang, T. F. Kuech. Mater. Res. Soc. Symp. Proc., 482, 709 (1998). https://doi.org/10.1557/PROC-482-709
  20. E. Richter, F.C. Beyer, F. Zimmermann, G.Gartner, K. Irmscher, I. Gamov, J. Heitmann, M. Weyers, G. Trankle. Cryst. Res. Technol., 55 (2), 1900129 (2020). https://doi.org/10.1002/crat.201900129
  21. W.V. Lundin, A.V. Sakharov, E.E. Zavarin, D.Yu. Kazantsev, B.Ya. Ber, M.A. Yagovkina, P.N. Brunkov, A.F. Tsatsulnikov. J. Cryst. Growth, 449, 108 (2016). https://doi.org/10.1016/j.jcrysgro.2016.06.002
  22. S.K. Layokun, D.H. Slater. Ind. Eng. Chem. Process Des. Dev., 18 (2), 232 (1979). https://doi.org/10.1021/i260070a008
  23. E.V. Yakovlev, R.A. Talalaev, A.V. Kondratyev, A.S. Segal, A.V. Lobanova, W.V. Lundin, E.E. Zavarin, M.A. Sinitsyn, A.F. Tsatsulnikov, A.E. Nikolaev. J. Cryst. Growth, 310 (23), 4862 (2008). https://doi.org/10.1016/j.jcrysgro.2008.07.099
  24. R.G. Wilson, F.A. Stevie, C.W. Magee. Secondary ion mass spectrometry: a practical handbook for depth profiling and bulk impurity analysis (Wiley, N. Y., 1989)
  25. T. Ciarkowski, N. Allen, E. Carlson, R. McCarthy, C. Youtsey, J. Wang, P. Fay, J. Xie, L. Guido. Materials, 12 (15), 2455 (2019). https://doi.org/10.3390/ma12152455
  26. R.M. Lum, J.K. Klingert, D.W. Kisker, D.M. Tennant, M.D. Morris, D.L. Malm, J. Kovalchick, L.A. Heimbrook. J. Electron. Mater., 17 (2), 101 (1988). https://doi.org/10.1007/BF02652137
  27. A.M. Kaminski, J. Sobkowski. React Kinet. Catal. Lett., 16, 105 (1981). https://doi.org/10.1007/BF02065439
  28. W. Li, G. Wang, Y. Li, T. Li, Y. Zhang, C. Cao, J. Zou, C.K. Law. Combustion and Flame, 191, 126 (2018). https://doi.org/10.1016/j.combustflame.2018.01.002
  29. L.V. Shevel'kova, A.V. Ivanyuk, N.S. Nametkin. Petrol. Chem. USSR, 20 (4), 201 (1980). https://doi.org/10.1016/0031-6458(80)90050-7
  30. G. Pratt, D. Rogers. J. Chem. Soc., Faraday Trans., 75, 1101 (1979). https://doi.org/10.1039/F19797501101
  31. Z. Shen, X. Yang, S. Wu, H. Huang, X. Yan, N. Tang, F. Xu, X. Wang, W. Ge, B. Huang, B. Shen. AIP Advances, 13, 035026 (2023). https://doi.org/10.1063/5.0133421
  32. W.V. Lundin, E.E. Zavarin, A.V. Sakharov, D.A. Zakheim, V.Yu. Davydov, A.N. Smirnov, I.A. Eliseyev, M.A. Yagovkina, P.N. Brunkov, E.Yu. Lundina, L.K. Markov, A.F. Tsatsulnikov. J. Cryst. Growth, 504, 1 (2018). https://doi.org/10.1016/j.jcrysgro.2018.09.017

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru