Study of growth conditions effect on GaN doping with carbon from propane and methane
Lundin W. V.1, Zavarin E. E. 1, Sakharov A. V.1, Kazantsev D. Yu.1, Ber B. Ya.1, Tsatsulnikov A. F.2
1Ioffe Institute, St. Petersburg, Russia
2Submicron Heterostructures for Microelectronics, Research and Engineering Center, Russian Academy of Sciences, St. Petersburg, Russia
Email: lundin.vpegroup@mail.ioffe.ru
A comprehensive study of intentional GaN carbon doping from propane and methane during MOVPE was performed in a wide range of growth conditions using both hydrogen and nitrogen carrier gas with growth rate varies from 0.8 to 62 μm/h. Carbon concentration raise with growth rate was revealed both precursors. For the same conditions carbon incorporation from methane is about one order lower than from propane. However, methane produced by trimethylgallium pyrolysis was revealed to be an important source for background carbon incorporation, especially at high growth rate. Character of the dependencies of carbon incorporation on concentration of carbon precursor and ammonia is significantly different for nitrogen and hydrogen carrier gases. Temperature dependencies of carbon incorporation from methane and background incorporation are similar while propane is more effective precursor at high temperature. Keywords: Doping, Metalorganic vapor phase epitaxy, Nitrides.
- W.Z. Wang, S.L. Selvaraj, K.T. Win, S.B. Dolmanan, T. Bhat, N. Yakovlev, S. Tripathy, G.Q. Lo. J. Electron. Mater., 44 (10), 3272 (2015). https://doi.org/10.1007/s11664-015-3832-3
- P. Gamarra, C. Lacam, M. Tordjman, J. Splettstosser, B. Schauwecker, M.-A. di Forte-Poisson. J. Cryst. Growth, 414, 232 (2015). https://doi.org/10.1016/j.jcrysgro.2014.10.025
- D.S. Kim, C.H. Won, H.S. Kang, Y.J. Kim, Y.T. Kim, I.M. Kang, J.-H. Lee. Semicond. Sci. Technol., 30 (3), 035010 (2015). https://doi.org/10.1088/0268-1242/30/3/035010
- S. Kato, Y. Satoh, H. Sasaki, I. Masayuki, S. Yoshida. J. Cryst. Growth, 298, 831 (2007). https://doi.org/10.1016/j.jcrysgro.2006.10.192
- K. Harrouche, S. Venkatachalam, F. Grandpierron, E. Okada, F. Medjdoub. Appl. Phys. Express, 15, 116504 (2022). https://doi.org/10.35848/1882-0786/ac9c46
- S. Wu, X. Yang, Z. Wang, Z. Ouyang, H. Huang, Q. Zhang, Q. Shang, Z. Shen, F. Xu, X. Wang, W. Ge, B. Shen. Appl. Phys. Lett., 120 (24), 242101 (2022). https://doi.org/10.1063/5.0093514
- G. Verzellesi, L. Morassi, G. Meneghesso, M. Meneghini, E. Zanoni, G. Pozzovivo, S. Lavanga, T. Detzel, O. Haberlen, G. Curatola. IEEE Electron Dev. Lett., 35 (4), 443 (2014). https://doi.org/10.1109/LED.2014.2304680
- X. Li, O. Danielsson, H. Pedersen, E. Janzen, U. Forsberg. J. Vac. Sci. Technol., B 33, 021208 (2015). http://dx.doi.org/10.1116/1.4914316
- X. Li, J. Bergsten, D. Nilsson, O. Danielsson, H. Pedersen, N. Rorsman, E. Janzen, U. Forsberg. Appl. Phys. Lett., 107, 262105 (2015). http://dx.doi.org/10.1063/1.4937575
- J. Bergsten, X. Li, D. Nilsson, O. Danielsson, H. Pedersen, E. Janzen, U. Forsberg, N. Rorsman. Jpn. J. Appl. Phys., 55, 05FK02 (2016). http://doi.org/10.7567/JJAP.55.05FK02
- W.V. Lundin, E.E. Zavarin, P.N. Brunkov, M.A. Yagovkina, A.V. Sakharov, M.A. Sinitsyn, B.Ya. Ber, D.Yu. Kazantsev, A.F. Tsatsulnikov. Tech. Phys. Lett. 42 (5), 539 (2016). https://doi.org/10.1134/S106378501605028X
- H. Yacoub, C. Mauder, S. Leone, M. Eickelkamp, D. Fahle, M. Heuken, H. Kalisch, A. Vescan. IEEE Trans. Electron Dev., 64 (3), 991 (2017). https://doi.org/10.1109/TED.2017.2647841
- H. Yacoub, Th. Zweipfennig, G. Lukens, H. Behmenburg, D. Fahle, M. Eickelkamp, M. Heuken, H. Kalisch, A. Vescan. IEEE Trans. Electron Dev., 65 (8), 3192 (2018). https://doi.org/10.1109/TED.2018.2850066
- X. Li, S. Zhu. J. Phys.: Conf. Ser., 2011, 012083 (2021). https://doi.org/10.1088/1742-6596/2011/1/012083
- L. Zhang, Z. Dong, X. Deng, X. Zhou, K. Xu, F. Yang, G. Yu, X. Zhang, Y. Fan, Z. Zeng, Z. Wei. B. Zhang. Mater. Lett., 345, 134475 (2023). https://doi.org/10.1016/j.matlet.2023.134475
- M.E. Zvanut, S. Paudel, E.R. Glaser, M. Iwinska, T. Sochacki, M. Bockowski. J. Electron. Mater., 48, 2226 (2019). https://doi.org/10.1007/s11664-019-07016-w
- Y. Lai, D. Wang, Q. Kong, X. Luo, J. Tang, R. Liu, F. Hou, X. Wang, T.J. Baker. J. Cryst. Growth, 573, 126216 (2021). https://doi.org/10.1016/j.jcrysgro.2021.126216
- Q. Liu, M. Zajac, M. Iwinska, S. Wang, W. Zhuang, M. Bockowski, X. Wang. Appl. Phys. Lett., 121 (17), 172103 (2022). https://doi.org/10.1063/5.0118250
- R. Zhang, T. F. Kuech. Mater. Res. Soc. Symp. Proc., 482, 709 (1998). https://doi.org/10.1557/PROC-482-709
- E. Richter, F.C. Beyer, F. Zimmermann, G.Gartner, K. Irmscher, I. Gamov, J. Heitmann, M. Weyers, G. Trankle. Cryst. Res. Technol., 55 (2), 1900129 (2020). https://doi.org/10.1002/crat.201900129
- W.V. Lundin, A.V. Sakharov, E.E. Zavarin, D.Yu. Kazantsev, B.Ya. Ber, M.A. Yagovkina, P.N. Brunkov, A.F. Tsatsulnikov. J. Cryst. Growth, 449, 108 (2016). https://doi.org/10.1016/j.jcrysgro.2016.06.002
- S.K. Layokun, D.H. Slater. Ind. Eng. Chem. Process Des. Dev., 18 (2), 232 (1979). https://doi.org/10.1021/i260070a008
- E.V. Yakovlev, R.A. Talalaev, A.V. Kondratyev, A.S. Segal, A.V. Lobanova, W.V. Lundin, E.E. Zavarin, M.A. Sinitsyn, A.F. Tsatsulnikov, A.E. Nikolaev. J. Cryst. Growth, 310 (23), 4862 (2008). https://doi.org/10.1016/j.jcrysgro.2008.07.099
- R.G. Wilson, F.A. Stevie, C.W. Magee. Secondary ion mass spectrometry: a practical handbook for depth profiling and bulk impurity analysis (Wiley, N. Y., 1989)
- T. Ciarkowski, N. Allen, E. Carlson, R. McCarthy, C. Youtsey, J. Wang, P. Fay, J. Xie, L. Guido. Materials, 12 (15), 2455 (2019). https://doi.org/10.3390/ma12152455
- R.M. Lum, J.K. Klingert, D.W. Kisker, D.M. Tennant, M.D. Morris, D.L. Malm, J. Kovalchick, L.A. Heimbrook. J. Electron. Mater., 17 (2), 101 (1988). https://doi.org/10.1007/BF02652137
- A.M. Kaminski, J. Sobkowski. React Kinet. Catal. Lett., 16, 105 (1981). https://doi.org/10.1007/BF02065439
- W. Li, G. Wang, Y. Li, T. Li, Y. Zhang, C. Cao, J. Zou, C.K. Law. Combustion and Flame, 191, 126 (2018). https://doi.org/10.1016/j.combustflame.2018.01.002
- L.V. Shevel'kova, A.V. Ivanyuk, N.S. Nametkin. Petrol. Chem. USSR, 20 (4), 201 (1980). https://doi.org/10.1016/0031-6458(80)90050-7
- G. Pratt, D. Rogers. J. Chem. Soc., Faraday Trans., 75, 1101 (1979). https://doi.org/10.1039/F19797501101
- Z. Shen, X. Yang, S. Wu, H. Huang, X. Yan, N. Tang, F. Xu, X. Wang, W. Ge, B. Huang, B. Shen. AIP Advances, 13, 035026 (2023). https://doi.org/10.1063/5.0133421
- W.V. Lundin, E.E. Zavarin, A.V. Sakharov, D.A. Zakheim, V.Yu. Davydov, A.N. Smirnov, I.A. Eliseyev, M.A. Yagovkina, P.N. Brunkov, E.Yu. Lundina, L.K. Markov, A.F. Tsatsulnikov. J. Cryst. Growth, 504, 1 (2018). https://doi.org/10.1016/j.jcrysgro.2018.09.017
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.