Application of a hemispherical rutile lens in THz solid immersion microscopy to achieve super-resolution
Zhelnov V. A. 1, Chernomyrdin N. V. 1, Spektor I. E. 1, Karalkin P. A.2, Ponomarev D. S. 3, Kurlov V. N. 4, Zaytsev K. I. 1
1Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
2Institute for Regenerative Medicine, Sechenov University, Moscow, Russia
3 Institute of Ultra High Frequency Semiconductor Electronics of RAS, Moscow, Russia
4Osipyan Institute of Solid State Physics RAS, Chernogolovka, Russia
Email: vleder.zel@mail.ru, chernik-a@yandex.ru

PDF
Solid immersion (SI) microscopy is a promising approach to overcome the diffraction limit by focusing light beam at a short distance behind a medium with a high refractive index. Due to the absence of subwavelength probes and apertures in the optical system, this method allows achieving high-energy efficiency. The super-resolution and high optical throughput of SI microscopy together open up possibilities for its application in various fields of science and technology. Spatial resolution of SI microscope is mainly limited by the refractive index of the SI lens, so that denser lenses allow higher resolution to be achieved. In this work, a bulk crystal of rutile (TiO2), characterized by an extremely high refractive index of ~10 in the terahertz range, is used for the first time to produce SI lens. This is the highest refractive index value ever used in SI microscopy. We assembled an original SI microscope utilizing a IMPATT diode as a continuous-wave terahertz source at a frequency of 0.2 THz (wavelength λ=1.5 mm) and a Golay detector. The spatial resolution of our microscope is in the range of 0.06-0.11λ was obtained by experimental investigations. This is the highest resolution ever recorded for any SI optical system. Keywords: terahertz technology, terahertz optical materials, rutile, high refractive index, near-field microscopy, solid immersion microscopy, super-resolution.
  1. S. Mansfield, G. Kino. Appl. Phys. Lett., 57 (24), 2615 (1990). DOI: 10.1063/1.103828
  2. N. Chernomyrdin, M. Skorobogatiy, D. Ponomarev, V. Bukin, V. Tuchin, K. Zaytsev. Appl. Phys. Lett., 120 (11), 110501 (2022). DOI: 10.1063/5.0085906
  3. N. Chernomyrdin, V. Zhelnov, A. Kucheryavenko, I. Dolganova, G. Katyba, V. Karasik, I. Reshetov, K. Zaytsev. Optical Engineering, 59 (6), 061605 (2019). DOI: 10.1117/1.OE.59.6.061605
  4. D. Fletcher, K. Crozier, C. Quate, G. Kino, K. Goodson, D. Simanovskii, D. Palanker. Appl. Phys. Lett., 77 (14), 2109 (2000). DOI: 10.1063/1.1313368
  5. R. Brunner, M. Burkhardt, A. Pesch, O. Sandfuchs, M. Ferstl, S. Hohng, J. White. J. Optical Society of America A, 21 (7), 1186 (2004). DOI: 10.1364/JOSAA.21.001186
  6. I. Golub. Opt. Lett., 32 (15), 2161 (2007). DOI: 10.1364/OL.32.002161
  7. M.-S. Kim, T. Scharf, M. Haq, W. Nakagawa, H. Herzig. Opt. Lett., 36 (19), 3930 (2011). DOI: 10.1364/OL.36.003930
  8. D. Kang, C. Pang, S.M. Kim, H.S. Cho, H.S. Um, Y.W. Choi, K. Suh. Advanced Materials, 24 (13), 1709 (2012). DOI: 10.1002/adma.201104507
  9. R. Grote, S. Mann, D. Hopper, A. Exarhos, G. Lopez, G. Kaighn, E. Garnett, L. Bassett. Nature Commun., 10, 2392 (2019). DOI: 10.1038/s41467-019-10238-5
  10. W. Fan, B. Yan, Z. Wang, L. Wu. Science Advances, 2 (8), e1600901 (2016). DOI: 10.1126/sciadv.1600901
  11. S. Ippolito, S. Thorne, M. Eraslan, B. Goldberg, M. Unlu, Y. Leblebici. Appl. Phys. Lett., 84 (22), 4529 (2004). DOI: 10.1063/1.1758308
  12. G. Lerman, A. Israel, A. Lewis. Appl. Phys. Lett., 89 (22), 223122 (2006). DOI: 10.1063/1.2398888
  13. Q. Wu, R. Grober, D. Gammon, D. Katzer. Phys. Rev. Lett., 83 (13), 2652 (1999). DOI: 10.1103/PhysRevLett.83.2652
  14. Z. Liu, B. Goldberg, S. Ippolito, A. Vamivakas, M. Unlu, R. Mirin. Appl. Phys. Lett., 87 (7), 071905 (2005). DOI: 10.1063/1.2012532
  15. R. Hadfield, P. Dalgarno, J. O'Connor, E. Ramsay, R. Warburton, E. Gansen, B. Baek, M. Stevens, R. Mirin, S. Nam. Appl. Phys. Lett., 91 (24), 241108 (2007). DOI: 10.1063/1.2824384
  16. A. Bogucki, L. Zinkiewicz, M. Grzeszczyk, W. Pacuski, K. Nogajewski, T. Kazimierczuk, A. Rodek, J. Suffczy'nski, K. Watanabe, T. Taniguchi, P. Wasylczyk, M. Potemski, P. Kossacki. Light: Science \& Applications, 9, 48 (2020). DOI: 10.1038/s41377-020-0284-1
  17. T. Schroder, F. Gadeke, M. Banholzer, O. Benson. New J. Physics, 13 (5), 055017 (2011). DOI: 10.1088/1367-2630/13/5/055017
  18. V. Devaraj, J. Baek, Y. Jang, H. Jeong, D. Lee. Opt. Express, 24 (8), 8045 (2016). DOI: 10.1364/OE.24.008045
  19. B. Terris, H. Mamin, D. Rugar, W. Studenmund, G. Kino. Appl. Phys. Lett., 65 (4), 388 (1994). DOI: 10.1063/1.112341
  20. S. Ippolito, P. Song, D. Miles, J. Sylvestri. Appl. Phys. Lett., 92 (10), 101109 (2008). DOI: 10.1063/1.2892656
  21. L. Wang, B. Bateman, L. Zanetti-Domingues, A. Moores, S. Astbury, C. Spindloe, M. Darrow, M. Romano, S. Needham, K. Beis, D. Rolfe, D. Clarke, M. Martin-Fernandez. Commun. Biology, 2, 74 (2019). DOI: 10.1038/s42003-019-0317-6
  22. A. Pimenov, A. Loidl. Appl. Phys. Lett., 83 (20), 4122 (2003). DOI: 10.1063/1.1627474
  23. B. Gompf, M. Gerull, T. Muller, M. Dressel. Infrared Physics \& Technology, 49 (1), 128 (2006). DOI: 10.1016/j.infrared.2006.01.021
  24. N. Chernomyrdin, A. Schadko, S. Lebedev, V. Tolstoguzov, V. Kurlov, I. Reshetov, I. Spektor, M. Skorobogatiy, S. Yurchenko, K. Zaytsev. Appl. Phys. Lett., 110 (22), 221109 (2017). DOI: 10.1063/1.4984952
  25. N. Chernomyrdin, A. Kucheryavenko, G. Kolontaeva, G. Katyba, I. Dolganova, P. Karalkin, D. Ponomarev, V. Kurlov, I. Reshetov, M. Skorobogatiy, V. Tuchin, K. Zaytsev. Appl. Phys. Lett., 113 (11), 111102 (2018). DOI: 10.1063/1.5045480
  26. N. Chernomyrdin, M. Frolov, S.P. Lebedev, I.V. Reshetov, I.E. Spektor, V.L. Tolstoguzov, V.E. Karasik, A.M. Khorokhorov, K.I. Koshelev, A.O. Schadko, S.O. Yurchenko, K.I. Zaytsev. Rev. Sci. Instruments, 88 (1), 014703 (2017). DOI: 10.1063/1.4973764
  27. D. Grischkowsky, S. Keiding, M. van Exter, C. Fattinger. J. Optical Society of America B, 7 (10), 2006 (1990). DOI: 10.1364/JOSAB.7.002006
  28. V. Zhelnov, K. Zaytsev, A. Kucheryavenko, G. Katyba, I. Dolganova, D. Ponomarev, V. Kurlov, M. Skorobogatiy, N. Chernomyrdin. Opt. Express, 29 (3), 3553 (2021). DOI: 10.1364/OE.415049
  29. N. Chernomyrdin, M. Skorobogatiy, A. Gavdush, G. Musina, G. Katyba, G. Komandin, A. Khorokhorov, I. Spektor, V. Tuchin, K. Zaytsev. Optica, 8 (11), 1471 (2021). DOI: 10.1364/OPTICA.439286
  30. A. Kucheryavenko, N. Chernomyrdin, A. Gavdush, A. Alekseeva, P. Nikitin, I. Dolganova, P. Karalkin, A. Khalansky, I. Spektor, M. Skorobogatiy, V. Tuchin, K. Zaytsev. Biomed. Opt. Express, 12 (8), 5272 (2021). DOI: 10.1364/BOE.432758
  31. N. Chernomyrdin, G. Musina, P. Nikitin, I. Dolganova, A. Kucheryavenko, A. Alekseeva, Y. Wang, D. Xu, Q. Shi, V. Tuchin, K. Zaytsev. Opto-Electronic Advances, 6 (4), 220071 (2023). DOI: 10.29026/oea.2023.220071
  32. G.R. Musina, N.V. Chernomyrdin, E.R. Gafarova, A.A. Gavdush, A.J. Shpichka, G.A. Komandin, V.B. Anzin, E.A. Grebenik, M.V. Kravchik, E.V. Istranova, I.N. Dolganova, K.I. Zaytsev, P.S. Timashev. Biomed. Opt. Express, 12 (9), 5368 (2021). DOI: 10.1364/BOE.433216
  33. Q. Chapdelaine, K. Nallappan, Y. Cao, H. Guerboukha, N. Chernomyrdin, K. Zaytsev, M. Skorobogatiy. Optical Materials Express, 12 (8), 3015 (2022). DOI: 10.1364/OME.461756
  34. H. Guerboukha, K. Nallappan, M. Skorobogatiy. Advances in Optics \& Photonics, 10 (4), 843 (2018). DOI: 10.1364/AOP.10.000843
  35. F. Gervais, B. Piriou. Phys. Rev. B, 10 (4), 1642 (1974). DOI: 10.1103/PhysRevB.10.1642
  36. G. Komandin, V. Anzin, V. Ulitko, A. Gavdush, A. Mukhin, Y. Goncharov, O. Porodinkov, I. Spektor. Opt. Engineering, 59 (6), 061 (2019). DOI: 10.1117/1.OE.59.6.061603
  37. D. Lavrukhin, A. Yachmenev, A. Pavlov, R. Khabibullin, Y. Goncharov, I. Spektor, G. Komandin, S. Yurchenko, N. Chernomyrdin, K. Zaytsev, D. Ponomarev. Semiconductor Science \& Technology, 34 (3), 034005 (2019). DOI: 10.1088/1361-6641/aaff31
  38. G. Musina, I. Dolganova, N. Chernomyrdin, A. Gavdush, V. Ulitko, O. Cherkasova, D. Tuchina, P. Nikitin, A. Alekseeva, N. Bal, G. Komandin, V. Kurlov, V. Tuchin, K. Zaytsev. J. Biophotonics, 13 (12), e20200029 (2020). DOI: 10.1002/jbio.202000297
  39. I. Pupeza, R. Wilk, M. Koch. Opt. Express, 15 (7), 4335 (2007). DOI: 10.1364/OE.15.004335
  40. K. Zaytsev, A. Gavdush, V. Karasik, V. Alekhnovich, P. Nosov, V. Lazarev, I. Reshetov, S. Yurchenko. J. Appl. Phys., 115 (19), 193105 (2014). DOI: 10.1063/1.4876324
  41. A. Shchepetilnikov, A. Zarezin, V. Muravev, P. Gusikhin, I. Kukushkin. Opt. Engineering, 59 (6), 061617 (2020). DOI: 10.1117/1.OE.59.6.061617
  42. C. Shannon. Proc. IRE, 37 (1), 10 (1949). DOI: 10.1109/JRPROC.1949.232969
  43. V. Tuchin. Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnostics, Third Edition (SPIE Press, USA, 2015). DOI: 10.1117/3.1003040
  44. L. Oliveira, K. Zaytsev, V. Tuchin. Proc. SPIE, 11585, 1158503 (2020). DOI: 10.1117/12.2584999
  45. I. Martins, H. Silva, E. Lazareva, N. Chernomyrdin, K. Zaytsev, L. Oliveira, V. Tuchin. Biomed. Opt. Express, 14 (1), 249 (2023). DOI: 10.1364/BOE.479320
  46. G. Musina, A. Gavdush, N. Chernomyrdin, I. Dolganova, V. Ulitko, O. Cherkasova, V. Kurlov, G. Komandin, I. Zhivotovskii, V. Tuchin, K. Zaytsev. Opt. Spectrosc., 128, 1026 (2020). DOI: 10.1134/S0030400X20070279
  47. V.A. Zhelnov, N.V. Chernomyrdin, G.M. Katyba, A.A. Gavdush, V.V. Bukin, S.V. Garnov, I.E. Spektor, V.N. Kurlov, M. Skorobogatiy, K.I. Zaytsev. Adv. Optical Mater., 2300927 (2023). DOI: 10.1002/adom.202300927
  48. B. Gompf, M. Gerull, T. Muller, M. Dressel. Infrared Physics and Technology, 49 (1), 128 (2006). DOI: 10.1016/j.infrared.2006.01.021
  49. B. Terris, H. Mamin, D. Rugar. Appl. Phys. Lett., 68 (2), 141 (1996). DOI: 10.1063/1.116127
  50. B. Terris, H. Mamin, D. Rugar, W. Studenmund, G. Kino. Appl. Phys. Lett., 65 (4), 388 (1994). DOI: 10.1063/1.112341
  51. G. Tessier, M. Bardoux, C. Bouue, C. Filloy, D. Fournier. Appl. Phys. Lett., 90 (17), 171112 (2007). DOI: 10.1063/1.2732179
  52. N. Chernomyrdin, A. Schadko, S. Lebedev, V. Tolstoguzov, V. Kurlov, I. Reshetov, I. Spektor, M. Skorobogatiy, S. Yurchenko, K. Zaytsev. Appl. Phys. Lett., 110 (22), 221109 (2017). DOI: 10.1063/1.4984952
  53. D. Fletcher. Microscale Thermophysical Engineering, 7 (4), 267 (2003). DOI: 10.1080/10893950390245985
  54. Q. Wu, R. Grober, D. Gammon, D. Katzer. Phys. Rev. Lett., 83 (13), 2652 (1999). DOI: 10.1103/PhysRevLett.83.2652
  55. S. Bishop, J. Hadden, R. Hekmati. Appl. Phys. Lett., 120 (11), 114001 (2022). DOI: 10.1063/5.0085257
  56. A. Pimenov, A. Loidl. Appl. Phys. Lett., 83 (20), 4122 (2003). DOI: 10.1063/1.1627474
  57. S. Ippolito, S. Thorne, M. Eraslan, B. Goldberg, M. Unlu, Y. Leblebici. Appl. Phys. Lett., 84 (22), 4529 (2004). DOI: 10.1063/1.1758308
  58. K. Karrai, X. Lorenz, L. Novotny. Appl. Phys. Lett., 77 (21) 3459 (2000). DOI: 10.1063/1.1326839
  59. D. Fletcher, K. Crozier, C. Quate, G. Kino, K. Goodson, D. Simanovskii, D. Palanker. Appl. Phys. Lett., 78 (23) 3589 (2001). DOI: 10.1063/1.1377318
  60. E. Ramsay, N. Pleynet, D. Xiao, R. Warburton, D. Reid. Opt. Lett., 30 (1), 26 (2005). DOI: 10.1364/OL.30.000026
  61. D. Fletcher, K. Crozier, C. Quate, G. Kino, K. Goodson, D. Simanovskii, D. Palanker. Appl. Phys. Lett., 77 (14), 2109 (2000). DOI: 10.1063/1.1313368
  62. F.H. Koklu, J.I. Quesnel, A.N. Vamivakas, S.B. Ippolito, B.B. Goldberg, M.S. Unlu. Opt. Express, 16, 13 950 (2008). DOI: 10.1364/OE.16.009501
  63. G. Katyba, N. Raginov, E. Khabushev, V. Zhelnov, A. Gorodetsky, D. Ghazaryan, M. Mironov, D. Krasnikov, Y. Gladush, J. Lloyd-Hughes, A. Nasibulin, A. Arsenin, V. Volkov, K. Zaytsev, M. Burdanova. Optica, 10 (1), 53 (2023). DOI: 10.1364/OPTICA.475385
  64. Z. Yan, L.-G. Zhu, K. Meng, W. Huang, Q. Shi. Trends in Biotechnology, 40 (7), 816 (2022). DOI: 10.1016/j.tibtech.2021.12.002
  65. C.D. Stoik, M.J. Bohn, J.L. Blackshire. Opt. Express, 16 (21), 17039 (2008). DOI: 10.1364/OE.16.017039
  66. J. True, C. Xi, N. Jessurun, K. Ahi, N. Asadizanjani. Opt. Engineering, 60 (6), 060901 (2021). DOI: 10.1117/1.OE.60.6.060901
  67. J.A. Zeitler, P.F. Taday, D.A. Newnham, M. Pepper, K.C. Gordon, T. Rades. J. Pharmacy and Pharmacology, 59 (2), 209 (2010). DOI: 10.1211/jpp.59.2.0008
  68. A. Ren, A. Zahid, D. Fan, X. Yang, M.A. Imran, A. Alomainy, Q.H. Abbasi. Trends in Food Science \& Technology, 85, 241 (2019). DOI: 10.1016/j.tifs.2019.01.019
  69. A. Kucheryavenko, V. Zhelnov, D. Melikyants, N. Chernomyrdin, S. Lebedev, V. Bukin, S. Garnov, V. Kurlov, K. Zaytsev, G. Katyba. Opt. Express, 31 (8), 13366 (2023). DOI: 10.1364/OE.484650

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru