YAl3(BO3)4:Cr crystals for luminescent cryothermometry
Molchanova A. D. 1, Diab M.1,2, Boldyrev K.N.1, Popova M.N. 1
1Institute of Spectroscopy, Russian Academy of Sciences, Troitsk, Moscow, Russia
2Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Region, Russia
Email: nastyamolchanova@list.ru, popova@isan.troitsk.ru

PDF
The luminescence spectra of the YAl3(BO3)4:Cr3+ crystal have been registered in the spectral range of 2E->4A2 electronic transitions in Cr3+ ions (14550-14700 cm-1) with high spectral resolution at temperatures 4-300 K. The temperature dependences of the ratios of the integral intensities of lines R2 and R1, as well as N' and N (presumably the lines of the 2E->4A2 transitions of the Cr3+ center in a position distorted due to the vicinity of a some defect), correspond well to the Boltzmann distribution. On the measurement of these ratios, a ratiometric thermometer with a maximum absolute sensitivity at temperatures 40.3 and 21.6 K, respectively, and a relative sensitivity of up to 12% K-1 can be realized. Measuring the width of the most intense spectral component - line R1 - can be a way to capture temperature in the range of 100 K and above. Keywords: luminescent cryothermometry, YAl3(BO3)4:Cr3+ crystal, high-resolution Fourier-transform spectroscopy.
  1. K. Elzbieciak-Piecka, L. Marciniak. Sci. Rep., 12, 16364 (2022). DOI:10.1038/s41598-022-20821-4
  2. M. Back, J. Ueda, M.G. Brik, S. Tanabe. ACS Appl. Mater. Interfaces, 12, 38325 (2020). DOI: 10.1021/acsami.0c08965
  3. M. Back, J. Ueda, M.G. Brik, T. Lesniewski, M. Grinberg, S. Tanabe. ACS Appl. Mater. Interfaces, 10, 41512 (2018). DOI: 10.1021/acsami.8b15607
  4. M. Back, E. Trave, J. Ueda, S. Tanabe. Chem. Mater., 28, 8347 (2016). DOI: 10.1021/acs.chemmater.6b03625
  5. A. Mondal, J. Manam. Ceram. Int., 46, 23972 (2020). DOI: 10.1016/j.ceramint.2020.06.174
  6. M. Back, J. Ueda, H. Nambu, M. Fujita, A. Yamamoto, H. Yoshida, H. Tanaka, M.G. Brik, S. Tanabe. Adv. Opt. Mater., 9, 2100033 (2021). DOI: 10.1002/adom.202100033
  7. X. Zhang, X. Chen, C. Zhou, J. Fan, W. Zhou, J. Luo, L. Liu, Q. Pang, P. Chen, L. Zhou. Ceram. Int., 48, 19484 (2022). DOI: 10.1016/j.ceramint.2022.03.252
  8. J. Ueda, M. Back, M.G. Brik, Y. Zhuang, M. Grinberg, S. Tanabe. Opt. Mater., 85, 510 (2018). DOI: 10.1016/j.optmat.2018.09.013
  9. D. Chen, S. Liu, Z. Wan, Z. Ji. J. Phys. Chem. C, 120, 21858 (2016). DOI: 10.1021/acs.jpcc.6b08271
  10. Y. Zhu, C. Li, D. Deng, H. Yu, H. Li, L. Wang, C. Shen, X. Jing, S. Xu. J. Lumin., 237, 118142 (2021). DOI: 10.1016/j.jlumin.2021.118142
  11. L. Marciniak, A. Bednarkiewicz. Sens. Actuators B Chem., 243, 388 (2017). DOI: 10.1016/j.snb.2016.12.006
  12. A. Ciric, S. Stojadinovic, Z. Ristic, v Z. Antic, M.D. Dramicanin. Sens. Actuators Phys., 331, 112987 (2021). DOI: 10.1016/j.sna.2021.112987
  13. V. Mykhaylyk, H. Kraus, Y. Zhydachevskyy, V. Tsiumra, A. Luchechko, A. Wagner, A. Suchocki. Sensors, 20, 5259 (2020). DOI: 10.3390/s20185259
  14. B. Zhu, N. Li, S. Ren, Y. Liu, D. Zhang, Q. Wang, Q. Shi, Q. Wang, S. Li, B. Zhang, W. Wang, C. Liu. Spectrochim. Acta. A: Mol. Biomol. Spectrosc., 264, 120321 (2022). DOI: 10.1016/j.saa.2021.120321
  15. M. Back, J. Ueda, J. Xu, K. Asami, M. G. Brik, S. Tanabe. Adv. Opt. Mater., 8, 2000124 (2020). DOI: 10.1002/adom.202000124
  16. M. Suta, A. Meijerink. Adv. Theory Simul., 3, 2000176 (2020). DOI: 10.1002/adts.202000176
  17. N.I. Leonyuk, L.I. Leonyuk. Prog. Cryst. Growth Charact. Mater., 31, 179 (1995). DOI: 10.1016/0960-8974(96)83730-2
  18. R.D. Shannon. Acta Crystallogr. Sect. A, 32, 751 (1976). DOI: 10.1107/S0567739476001551
  19. J.-P.R. Wells, M. Yamaga, T.P.J. Han, M. Honda. J. Phys. Condens. Matter., 15, 539 (2003). DOI: 10.1088/0953-8984/15/3/318
  20. G. Wang, H.G. Gallagher, T.P.J. Han, B. Henderson. J. Cryst. Growth, 153, 169 (1995). DOI: 10.1016/0022-0248(95)00157-3
  21. G. Wang, H.G. Gallagher, T.P.J. Han, B. Henderson. Radiat. Eff. Defects Solids, 136, 43 (1995). DOI: 10.1080/10420159508218789
  22. G. Dominiak-Dzik, W. Ryba-Romanowski, M. Grinberg, E. Beregi, L. Kovacs. J. Phys. Condens. Matter., 14, 5229 (2002). DOI: 10.1088/0953-8984/14/20/318
  23. A. Molchanova, K. Boldyrev, N. Kuzmin, A. Veligzhanin, K. Khaydukov, E. Khaydukov, O. Kondratev, I. Gudim, E. Mikliaeva, M. Popova. Materials, 16, 537 (2023). DOI: 10.3390/ma16020537
  24. G.F. Imbusch. Phys. Rev., 153, 326 (1967). DOI: 10.1103/PhysRev.153.326
  25. S.P. Jamison, G.F. Imbusch. J. Lumin., 75, 143 (1997). DOI: 10.1016/S0022-2313(97)00117-8
  26. B. Malysa, A. Meijerink, T. Justel. J. Lumin., 171, 246 (2016). DOI: 10.1016/j.jlumin.2015.10.042
  27. W. Mikenda, A. Preisinger. J. Lumin., 26, 53 (1981). DOI: 10.1016/0022-2313(81)90169-1
  28. P. Kisliuk, W.F. Krupke. J. Appl. Phys., 36, 1025 (1965). DOI: 10.1063/1.1714084

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru