Optimization of chemical composition and structure of the photocatalyst of ZnO-SnO2-Fe2O3 system
Gavrilova D. A.1,2, Gavrilova M. A.1,2, Khomutinnikova L. L.1, Evstropiev S. K.1,2,3, Meshkovskii I. K.1
1ITMO University, St. Petersburg, Russia
2Saint-Petersburg State Institute of Technology (Technical University), St. Petersburg, Russia
3Vavilov State Optical Institute, St. Petersburg, Russia
Email: amonobel@yandex.ru

PDF
The work carried out studies to optimize the chemical composition and structure of the photocatalyst of the ZnO-SnO2-Fe2O3 system for sensor and medical applications. Photocatalytic materials were synthesized by liquid polymer-salt method and their structure and chemical composition were studied by XRD and SEM analysis and optical and luminescence spectroscopy. Obtained composites are composed from hexagonal ZnO crystals, tetragonal SnO2 crystals and ZnSn2O4 spinel. The band gap values of prepared materials are 3.17-3.24 eV. The kinetic dependencies of the adsorption of organic diazo dye Chicago Sky Blue from solutions on the composite surfaces are successfully described by kinetic equations of as pseudo-first so as pseudo-second orders. The kinetics of photocatalytic dye decomposition under UV and visible irradiations is successfully described by kinetic equation of pseudo-first order. It was found that Ag addition allows to remarkably enhance adsorptive and photocatalytic properties of SnO-SnO2-Fe2O3 materials. Keywords: nanocrystals, heterostructure, photocatalysis, adsorption.
  1. C.S. Turchi, D.F. Ollis. J. Catal., 122 (1), 178-192 (1990)
  2. Y. Li, W. Zhang, J. Niu, Y. Chen. ACS Nano, 6 (6), 5164-5173 (2012). DOI: 10.1021/nn300934k
  3. Y. Nosaka, A.Y. Nosaka. Chem. Rev., 117 (17), 11302-11336 (2017). DOI: 10.1021/acs.chemrev.7b00161
  4. Y. Jiang, S. Li, S. Wang, Y. Zhang, C. Long, J. Xie, X. Fan, W. Zhao, P. Xu, Y. Fan, C. Cui, Z. Tang. J. Am. Chem. Soc., 145 (4), 2698-2707 (2023). DOI:10.1021/jacs.2c13313
  5. L. Khomutinnikova, S. Evstropiev, I. Meshkovskii, I. Bagrov, V. Kiselev. Ceramics, 6 (2), 886-897 (2023). DOI: 10.3390/ceramics6020051
  6. M.A. Gavrilova, D.A. Gavrilova, S.K. Evstropiev, A.A. Shelemanov, I.V. Bagrov. Ceramics, 6 (3), 1667-1681 (2023). DOI:10.3390/ceramics6030103.K
  7. T. Wang, B. Tian, B. Han, D. Ma, M. Sun, A. Hanif, D. Xia, J. Shang. Energy \& Environ. Mater., 5, 711-730 (2022). DOI: 10.1002/eem2.12229
  8. A.S. Saratovskii, D.V. Bulyga, S.K. Evstrop'ev, T.V. Antropova. Glass Phys. Chem., 48 (1), 10-17 (2022). DOI: 10.1134/S1087659622010126
  9. W. Zou, B. Gao, Y.S. Ok, L. Dong. Chemosphere, 218, 845-859 (2019). DOI: 10.1016/j.chemosphere.2018.11.175
  10. L.L. Khomutinnikova, I.K. Meshkovskii, S.K. Evstropiev, M.Yu. Litvinov, E.P. Bykov, S.A. Plyastsov. Opt. Spectrosc., 131 (3), 399-404 (2023). DOI: 10/21883/OS.2023.03.55395.4525-23
  11. H. Li, S. Chu, Q. Ma, H. Li, Q. Che, J. Wang, G. Wang, P. Yang. ACS Appl. Mater. Interfaces, 11 (34), 31551-31561 (2019). DOI: 10.1021/acsami.9610410
  12. Y. Xia, J. Wang, L. Xu, X. Li, S. Huang. Sensors and Actuators B, 304, 127334 (2020). DOI: 10.1016/j.anb.2019.127334
  13. Sh. Nasresfahani, M.N. Sheikhi, M. Tohidi, A. Zarifkar. Mater. Res. Bull., 89, 161-169 (2017). DOI: 10.1016/j.materresbull.2017.01.032
  14. D. Zhang, H. Chang, Y. Sun, C. Jiang, Y. Yao, Y. Zhang. Sensors and Actuators B, 252, 624-632 (2017). DOI: 10.1016/j.snb.2017.06.063
  15. L.L. Khomutinnikova, S.K. Evstropiev, D.P. Danilovich, I.K. Meshkovskii, D.V. Bulyga. J. Comp. Sci., 6, 331 (2022). DOI: 10.3390/jcs6110331
  16. A.A. Shelemanov, S.K. Evstropiev, A.V. Karavaeva, N.V. Nikonorov, V.N. Vasilyev, Y.F. Podruhin, V.M. Kiselev. Mater. Chem. Phys., 276, 125204 (2022). DOI: 10.1016/j.matchemphys.2021.125204
  17. T.N. Ravishankar, K. Manjunatha, T. Ramakrishnappa, Dhanith Nagaraju, S. Sarakar, B.S. Anadakumar, G.T. Chandrappa, Viswanath Reddy, J. Dupont. Mater. Sci. Semicond. Process., 26, 7-17 (2014). DOI: 10.1016/j.mssp.2014.03.027
  18. Z. Cheng, S. Zhao, L. Han. Nanoscale, 10, 6892-6899 (2018). DOI: 10.1039/c7nr09683f
  19. S.K. Evstropiev, V.N. Vasilyev, N.V. Nikonorov, E.V. Kolobkova, N.A. Volkova, I.A. Boltenkov. Chem. Engin. Process.: Process Intens., 134, 45-50 (2018). DOI: 10.1016/j.cep.2018.10.020
  20. E.D. Foletto, J.M. Simoes, M.A. Mazutti, S.L. Jahn, E.I. Muller, L.S.F. Pereira, E.M. de Moraes Flores. Ceram. Int., 39 (4), 4569-4574 (2017). DOI: 10.1016/j.ceramint.2012.11.053
  21. S. Bhatia, N. Verma. Mater. Res. Bull., 95, 468-476 (2017). DOI: 10.1016/j.materresbull.2017.08.019
  22. L. Zhu, M. Hong, G.W. Ho. Sci. Rep., 5, 11609 (2015)
  23. M.C. Uribe-Lopez, M.C. Hidalgo-Lopez, R. Lopez-Gonzalez, D.M. Fri as-Marquez, G. Nunez-Nogueira, D. Hernandez-Castillo, M.A. Alvarez-Lemus. J. Photochem. Photobiol. Chem., 404, 112866 (2021). DOI: 10.1016/j.jphotochem.2020.112866
  24. J. Wang, H. Li, S. Meng, L. Zhang, X. Fu, S. Chen. Appl. Catalysis B, 200, 19-30 (2017). DOI: 10.1016/j.apcatb.06.070
  25. H. Vahdat Vasei, S.M. Masoudpanah. J. Mater. Res. Technol., 11, 112-120 (2021)
  26. J. Tauc. Mater. Res. Bull., 3, 37-46 (1968)
  27. A. Hamrouni, N. Moussa, F. Parrino, A. Di Paola, A. Houas, L. Palmisano. J. Molec. Catalysis A, 390, 133-141 (2014). DOI: 10.1016/j.molcata.2014.03.018
  28. L. Da Trindade, G.Y. Hata, J.C. Souza, M.R.S. Soares, E.R. Leite, E.C. Pereira, E. Longo, T.M. Mazzo. J. Mater. Sci., 55, 2923-2936 (2020). DOI: 10/1007/s10853-019-04135-x
  29. S. Vempati, J. Mitra, P. Dawson. Nanoscale Res. Lett., 7, 470 (2012). DOI: 10.1186/1556-276X-7-470
  30. H. Zeng, G. Duan, Y. Li, S. Yang, X. Xu, W. Cai. Adv. Funct. Mater., 20 (4), 561-572 (2020). DOI: 10.1002/adfm.200901884
  31. D. Das, P. Mondal. RSC Adv., 4, 35735-35743 (2014). DOI: 10.1039/C4RA06063F
  32. Y. Kuang, X. Zhang, S. Zhou. Water, 12 (2), 587 (2020). DOI: 10.3390/w12020587
  33. U.I. Gaya, A.H. Abdullah. J. Photochem. Photobiol. C, 9, 1-12 (2008). DOI: 10.1016/j.jphotochemrev.2007.12.003
  34. V. Loddo, M. Bellardita, G. Camera-Roda, F. Parnino, L. Palmisano. Heterogeneous Photocatalysis: A promising advanced oxidation process. (Elsevier Inc., 2018), Ch. 1. DOI: 10.1016/B978-0-12-813549-5.00001-3
  35. A. Shelemanov, A. Tincu, S.K. Evstropiev, N. Nikonorov, V. Vasilyev. J. Compos. Sci., 7, 263 (2023). DOI: 10.3390/jcs7070263
  36. A. Mohammad, K. Kapoor, S.M. Mobin. Chemistry Select, 1, 3483 (2016). DOI: 10.1002/slct.201600476

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru