Physics of the Solid State
Volumes and Issues
The effect of van Hove singularities on spin pumping in the magnonic crystal/normal metal structure
Vysotskii S. L. 1,2, Nikulin Y. V. 1,2, Dudko G. M. 1, Sakharov V. K. 1,2, Kozhevnikov A. V. 1, Seleznev M. E. 1,2, Khivintsev Y. V. 1,2, Khitun A. G.3, Nikitov S. A. 4, Filimonov Y. A. 1,2,5
1Saratov Branch, Kotel’nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Saratov, Russia
2Saratov State University, Saratov, Russia
3Department of Electrical and Computer Engineering, University of California-Riverside, Riverside, USA
4Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Moscow, Russia
5Yuri Gagarin State Technical University of Saratov, Saratov, Russia
Email: yuri.a.filimonov@gmail.com

PDF
Using the inverse spin Hall effect, spin pumping by magnetostatic backward volume waves (MSBVW) in a structure based on a magnonic crystal from an yttrium-iron garnet film and a Pt microstrip has been studied. A resonant increase in the EMF signal at the frequencies of Bragg resonances (BR) was detected, which reflects an increase in the efficiency of spin pumping. The resonant amplification of spin pumping is explained by an increase in the efficiency of electron-magnon scattering due to the formation of dispersion regions with a high density of van Hove singularities in the MSBVW spectrum at BR frequencies. Keywords: spin pumping, spin waves, density of states, magnonic crystal, structures yttrium-iron garnet/platinum (YIG/Pt).
  1. A. Chumak, V. Vasyuchka, A. Serga, B. Hillebrands. Nature Phys. 11, 453 (2015). https://doi.org/10.1038/nphys3347
  2. S.A. Nikitov, D.V. Kalyabin, I.V. Lisenkov, A.N. Slavin, Yu.N. Barabanenkov at al. UFN, 185, 1099 (2015). (in Russian)
  3. S.A. Nikitov, A.R. Safin, D.V. Kalyabin, A.V. Sadovnikov, E.N. Beginin, M.V. Logunov, M.A. Morozova, S.A. Odintsov, S.A. Osokin, A.Yu. Sharaevskaya, Yu. P. Sharaevsky, A.I. Kirilyuk, UFN 190, 1009 (2020). (in Russian)
  4. V.E. Demidov, S. Urazhdin, G. de Loubens, O. Klein, V. Cros, A. Anane, S.O. Demokritov. Phys. Rep. 673, 23 (2017). http://dx.doi.org/10.1016/j.physrep.2017.01.001
  5. M. Althammer. J. Phys. D 51, 313001 (2018); DOI: 10.1088/1361-6463/aaca89
  6. V.E. Demidov, S. Urazhdin, A. Anane, V. Cros, S.O. Demokritov. J. Appl. Phys. 127, 170901 (2020). https://doi.org/10.1063/5.0007095
  7. A. Brataas, B. van Wees, O. Klein, G. de Loubens, M. Viret. Phys. Rep. 885, 1 (2020). https://doi.org/10.1016/j.physrep.2020.08.006
  8. Y. Kajiwara, K. Harii, S. Takahashi, J. Ohe, K. Uchida, M. Mizuguchi, H. Umezawa, H. Kawai, K. Ando, K. Takanashi, S. Maekawa, E. Saitoh. Nature 464, 262 (2010). DOI: 10.1038/nature08876
  9. M. Collet, X. de Milly, O. d'Allivy Kelly, V.V. Naletov, R. Bernard, P. Bortolotti, J. Ben Youssef, V.E. Demidov, S.O. Demokritov, J.L. Prieto, M. Munoz, V. Cros, A. Anane, G. de Loubens, O. Klein. Nature Commun. 7, 10377 (2016). https://doi.org/10.1038/ncomms1037720
  10. M. Evelt, V.E. Demidov, V. Bessonov, S.O. Demokritov, J.L. Prieto, M. Munoz, J. Ben Youssef, V.V. Naletov, G. de Loubens, O. Klein, M. Collet, K. Garcia-Hernandez, P. Bortolotti, V. Cros, A. Anane. Appl. Phys. Lett. 108, 172406 (2016). https://doi.org/10.1063/1.4948252
  11. K.-I. Uchida, H. Adachi, T. Ota, H. Nakayama, S. Maekawa, E. Saitoh. Appl. Phys. Lett. 97, 172505 (2010). https://doi.org/10.1063/1.3507386
  12. C.W. Sandweg, Y. Kajiwara, A.V. Chumak, A.A. Serga, V.I. Vasyuchka, M.B. Jungfleisch, E. Saitoh, B. Hillebrands. Phys. Rev. Lett. 106, 216601 (2011). https://doi.org/10.1103/PhysRevLett.106.216601
  13. H. Kurebayashi, O. Dzyapko, V.E. Demidov, D. Fang, A.J. Ferguson, S.O. Demokritov. Nature Mater. 10, 660 (2011). https://doi.org/10.1038/NMAT3053
  14. Y. Tserkovnyak, A. Brataas, G.E.W. Bauer. Phys. Rev. Lett. 88, 117601 (2002). https://doi.org/10.1103/PhysRevLett.88.117601
  15. Z. Qiu, K. Ando, K. Uchida, Y. Kajiwara, R. Takahashi, H. Nakayama, T. An, Y. Fujikawa, E. Saitoh. Appl. Phys. Lett. 103, 092404 (2013). https://doi.org/10.1063/1.4819460
  16. L.Liu, Y. Li, Y. Liu, T. Feng, J. Xu, X.R. Wang, D. Wu, P. Gao, J. Li. Phys. Rev. B 102, 014411 (2020). DOI: 10.1103/PhysRevB.102.014411
  17. D. Song, L. Ma, S. Zhou, J. Zhu. Appl. Phys. Lett. 107, 042401 (2015). https://doi.org/10.1063/1.4927551
  18. E.G. Tveten, A. Brataas, Y. Tserkovnyak. Phys. Rev. B 92, 180412(R) (2015). https://doi.org/10.1103/PhysRevB.92.180412
  19. L. van Hove. Phys. Rev. 89, 1189 (1953). https://doi.org/10.1103/PhysRev.89.1189
  20. G. Li, H. Jin, Y. Wei, J. Wang. Phys. Rev. B 106, 205303 (2022). https://doi.org/10.1103/PhysRevB.106.205303
  21. V. Kalappattil, R. Geng, R. Das, M. Pham, H. Luong, T. Nguyen, A. Popescu, L.M. Woods, M. Klaui, H. Srikanth, M.H. Phan. Mater. Horizons 7, 1413 (2020). https://doi.org/10.1039/C9MH01498E
  22. L. Wang, Z. Lu, J. Xue, P. Shi, Y. Tian, Y. Chen, S. Yan, L. Bai, M. Harder. Phys. Rev. Appl. 11, 044060 (2019)
  23. Y.Z. Wang, T.Y. Zhang, J. Dong, P. Chen, G.Q. Yu, C.H. Wan, X.F. Han. Phys. Rev. Lett. 132, 076701 (2024)
  24. R.W. Damon, J.R. Eshbach. J. Phys. Chem. Solids 19, 308 (1961). DOI: 10.1016/0022-3697(61)90041-5
  25. M.E. Seleznev, Y.V. Nikulin, Y.V. Khivintsev, S.L. Vysotsky, A.V. Kozhevnikov et al. Zhurnal radioelectroniki 12, (2023). http://jre.cplire.ru/jre/dec23/4/abstract.html (in Russian)
  26. S.L. Vysotsky, Yu.V. Nikulin, G.M. Dudko, V.K. Sakharov, A.V. Kozhevnikov, et all. 2022 Int. Conf. Actual Problems of Electron Devices Engineering (APEDE) --- IEEE, 1, 32 (2022). https://ieeexplore.ieee.org/abstract/document/9912920
  27. A.V. Chumak, A.A. Serga, B. Hillebrands, M.P. Kostylev. Appl. Phys. Lett. 93, 022508 (2008)
  28. A.V. Chumak, A.A. Serga, S. Wolff, B. Hillebrands, M.P. Kostylev. J. Appl. Phys. 105, 083906 (2009)
  29. A.V. Chumak, A.A. Serga, S. Wolff, B. Hillebrands, M.P. Kostylev. Appl. Phys. Lett. 94, 172511 (2009). https://doi.org/10.1063/1.3127227
  30. D. Richardson, B.A. Kalinikos, L.D. Carr, M. Wu. Phys. Rev. Lett. 121, 107204 (2018). https://doi.org/10.1103/PhysRevLett.121.107204
  31. U.V. Gulyaev, S.A. Nikitov. Dokl. of the Academy of Sciences 380, 469 (2001). (in Russian)
  32. S.A. Nikitov, Ph. Tailhades, C.S. Tsai, J. Magn. Magn. Mater 236, 320 (2001)
  33. S.L. Vysotsky, S.A. Nikitov, Yu.A. Filimonov. J. Exp. Theor. Phys., 128, 636 (2005). (in Russian)
  34. M.J. Donahue, D.G. Porter. OOMMF user's guide. Interagency Rep. NIST 6376 (1999)
  35. M. Dvornik, Y. Au, V.V. Kruglyak. In: Magnonics. / Ed. S. Demokritov, A. Slavin. Springer, Berlin (2013). 125.P. 101-115
  36. V.K. Sakharov, Yu.V. Khivintsev, G.M. Dudko, A.S. Jumaliev, A.V. Kozhevnikov, S.L. Vysotsky, A.I. Stogny, Y.A. Filimonov. FTT 64, 1255 (2022). (in Russian).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru