Structural and superconducting properties of tungsten and iridium films for low-temperature microcalorimeters
Drozdov M. N.1, Daniltsev V. M.1, Arkhipova E. A.1, Khrykin O. I.1, Yunin P. A.1, Gordeeva A. V.2, Safonova V. Yu.2, Pimanov D. A.2, Pankratov A. L.1,2
1Institute for Physics of Microstructures, Russian Academy of Sciences, Nizhny Novgorod, Russia
2Alekseev State Technical University, Nizhny Novgorod, Russia
Email: drm@ipm.sci-nnov.ru, anna.gord@list.ru, v.sfonova@mail.ru, alp@ipmras.ru
The deposition technology and the basic properties of thin layers of tungsten and iridium, promising for the creation of superconducting low-temperature microcalorimeters in the temperature range from 15 to 100 mK, are investigated. Superconducting layers of the α-phase of tungsten with a low superconducting transition temperature T_c~15 mK and superconducting iridium layers with T_c~170 mK have been obtained, which can serve as the basis for the formation of bilayers with a superconducting transition temperature in the range 15-100 mK. Keywords: tungsten, iridium, superconductivity, bolometers, X-ray diffractometry, secondary ion mass spectrometry.
- C. Chang, G. Wang. Transition edge sensors (TES) for photon detection. SNOWMASS 2021 (IF02), Seattle, WA. (July 18, 2022)
- Jurek Loebell. Setup of UHV System for the Production of Tungsten TES. Dissertation. (Tubingen 2016)
- A.H. Abdelhameed, G. Angloher, P. Bauer, A. Bento, E. Bertoldo, L. Canonica, D. Fuchs, D. Hauff, N. Ferreiro Iachellini, M. Mancuso, F. Petricca, F. Probst, J. Riesch, J. Rothe. J. Low Temper. Phys. https://doi.org/10.1007/s10909-020-02357
- A.E. Lita, D. Rosenberg, S. Nam, A.J. Miller, D. Balzar, L.M. Kaatz, R.E. Schwall. IEEE Transact. Appl. Supercond. 15, 2, 3528 (2005). DOI: 10.1109/TASC.2005.849033
- F.T.N. Vullers, R. Spolenak. Thin Solid Films 577, 26 (2015). http://dx.doi.org/10.1016/j.tsf.2015.01.030
- U. Nagel, A. Nowak, E. Kellner, H.-J. Gebauer, P. Colling, S. Cooper, D. Dummer, P. Ferger, M. Frank, P. Freund, G. Ferster, J. Igalson, A. Nucciotti, F. Probst, A. Rulofs, W. Sidel, L. Stodolsky. J. Low Temp. Phys. 93, 543 (1993). https://doi.org/10.1007/BF00693473
- D.F. Bogorin, M. Galeazzi. J. Low Temp. Phys. 151, 167 (2008). DOI: 10.1007/s10909-007-9622-4
- R. Hennings-Yeomans, C.L. Chang, J. Ding, A. Drobizhev, B.K. Fujikawa, S. Han, G. Karapetrov, Yu.G. Kolomensky, V. Novosad, T. O'Donnell, J.L. Ouellet, J. Pearson, T. Polakovic, D. Reggio, B. Schmidt, B. Sheff, V. Singh, R.J. Smith, G. Wang, B. Welliver, V.G. Yefremenko, J. Zhang. J. Appl. Phys. 128, 154501 (2020). https://doi.org/10.1063/5.0018564
- V. Singh, M. Beretta, E.V. Hansen, K.J. Vetter, G. Benato, C. Capelli, B.K. Fujikawa, B. Schmidt, C.L. Chang, Yu.G. Kolomensky, B. Welliver, M. Lisovenko, G. Wang, V. Yefremenko, J. Zhang, L. Marini, W.K. Kwok, J. Pearson, U. Welp, V. Novosad. arXiv: 2210.15619v2 [physics.ins-det] 30 Oct 2022. Phys. Rev. Appl. 20, 064017 (2023). https://doi.org/10.1103/PhysRevApplied.20.064017
- Gensheng Wang, Jeffrey Beeman, Clarence L. Chang, Junjia Ding, A. Drobizhev, B.K. Fujikawa, K. Han, S. Han, R. Hennings-Yeomans, Goran Karapetrov, Yury G. Kolomensky, Valentyn Novosad, T. O'Donnell, J.L. Ouellet, John Pearson, B. Sheff, V. Singh, S. Wagaarachchi, J.G. Wallig, Volodymyr G. Yefremenko. IEEE Transact. Appl. Supercond. 27, 4, 2100405 (2017). DOI: 0.1109/TASC.2016.2646373
- M. Golosov, V. Lozanov, N. Baklanova. Mater. Today: Proc. 25 (February, 2020). https://doi.org/10.1016/j.matpr.2019.12.088
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.