Correlative extreme ultraviolet, ultraviolet and optical microscopy based on a specular microscope with axial tomography
I. V. Malyshev1, Reunov D.G.1, N. I. Chkhalo 1, M. N. Toropov1, Pestov A.E.1, Polkovnikov V. N.1, Chernyshov A.K.1, Pleshkov P.C.1, Kazakov E.P.2,3, Lavrushkina C.V.2, Golyshev С.A.2, Pospelov A.D. 4, Shirokova O.M.
1Institute for Physics of Microstructures, Russian Academy of Sciences, Nizhny Novgorod, Russia
2A.N. Belozersky Scientific Research Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
3Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
4Lobachevsky State University, Nizhny Novgorod, Russia
Email: reunov_dima@ipmras.ru

PDF
The work is devoted to the use of a mirror extreme ultraviolet microscope with a magnification of 46 times and a resolution of up to 140 nm for studying samples at three wavelengths: 13.84 nm, 200 nm and 535 nm is considered. The ability to see one area of a sample at different wavelengths provides additional information about its structure. The choice of wavelength occurs by changing sources: LED or gas laser-plasma source, as well as input-output of a multilayer filter that cuts off everything except 13.84 nm. For three-dimensional reconstruction, the sample was scanned along the optical axis using a piezo actuator. In reconstructing images from tomographic data, a point spread function is used, modeled on the basis of aberrations measured on an interferometer. Keywords: extreme ultraviolet microscopy, ultraviolet microscopy, axial tomography, electron microscopy, soft x-ray microscopy.
  1. E. Hanssen, Ch. Knoechel, M. Dearnley, M.W.A. Dixon, M. Le Gros, C. Larabell, L. Tilley. J. Struct. Biol., 177, 224 (2012). DOI: 10.1016/j.jsb.2011.09.003
  2. D. Sage, L. Donati, F. Soulez, D. Fortun, G. Schmit, A. Seitz, R. Guiet, C. Vonesch, M. Unser. Methods, 115, 28 (2017). DOI: 10.1016/j.ymeth.2016.12.015
  3. L. Schermelleh, R. Heintzmann, H. Leonhardt. J. Cell Biol., 190 (2), 165 (2020). DOI: 10.1083/jcb.201002018
  4. V. Luvcic, A. Rigort, W. Baumeister. J. Cell Biol., 202 (3), 407 (2013). DOI: 10.1083/jcb.201304193
  5. K. Leigh, P. Navarro, S. Scaramuzza, W. Chen, Y. Zhang, D. Casta\`no-Di ez, M. Kudryashev. Methods Cell Biol., 152, 217 (2019)
  6. M. Kordel, A. Dehlinger, C. Seim, U. Vogt, E. Fogelqvist, J.A. Sellberg, H. Stiel, H.M. Hertz. Optica, 7 (6), 658 (2020). DOI: 10.1364/OPTICA.393014
  7. B. Rosner, F. Koch, F. Doring, V.A. Guzenko, M. Meyer, J.L. Ornelas, A. Spath, R.H. Fink, S. Stanescu, S. Swaraj, R. Belkhou, B. Watts, J. Raabe, C. David. Microsc. Microanal., 24, 272 (2018)
  8. I. Kounatidis, M.L. Stanifer, M.A. Phillips, P. Paul-Gilloteaux, X. Heiligenstein, H. Wang, Ch.A. Okolo, Th.M. Fish, M.C. Spink, D.I. Stuart, I. Davis, S. Boulant, J.M. Grimes, I.M. Dobbie, M. Harkiolaki. Cell., 182 (2), 515 (2020). DOI: 10.1016/j.cell.2020.05.051I
  9. A. Gianoncelli, V. Bonanni, G. Gariani, F. Guzzi, L. Pascolo, R. Borghes, F. Bille, G. Kourousias. Appl. Sci., 11 (16), 7216 (2021). DOI: 10.3390/app11167216
  10. T. Parkman, M. Nevrkla, A. Janvcarek, J. Turvnova, D. Panek, M. Vrbova. Appl. Sci., 10 (18), 6373 (2020). DOI: 10.3390/app10186373
  11. I. A. Artyukov, A.V. Vinogradov, E. A. Bugaev, A. Yu. Devizenko, V. V. Kondratenko, Yu. S. Kasyanov. ZhETF, 136 (5), 1009 (2009). (in Russian)
  12. M. Toyoda, K. Yamasoe, T. Hatano, M. Yanagihara, A. Tokimasa, T. Harada, T. Watanabe, H. Kinoshita. Appl. Phys. Express., 5 (11), 112501 (2012). DOI: 10.1143/APEX.5.112501
  13. L. Juschkin, R. Freiberger, K. Bergmann. J. Phys.: Conf. Ser., 186, 012030 (2009)
  14. A. Torrisi, P. Wachulak, . Wegrzynski, T. Fok, A. Bartnik, T. Parkman, vS. Vondrova, J. Turvvnova, B.J. Jankiewicz, B. Bartosewicz, H. Fiedorowicz. J. Microscopy, 00 (0), 1 (2016). DOI: 10.1111/jmi.12494A
  15. P.W. Wachulak, A. Torrisi, A. Bartnik, . Wegrzynski, T. Fok, H. Fiedorowicz. Appl. Phys. B, 123, 25 (2017). DOI: 10.1007/s00340-016-6595-5
  16. T. Ejima, F. Ishida, H. Murata, M. Toyoda, T. Harada, T. Tsuru, T. Hatano, M. Yanagihara, M. Yamamoto, H. Mizutani. Opt. Express, 18 (7), 7203 (2010). DOI: 10.1364/OE.18.007203
  17. P.A.C. Takman, H. Stollberg, G.A. Johansson, A. Holmberg, M. Lindblom, H.M. Hertz. J. Microscopy, 226, 175 (2007)
  18. C.A. Larabell, M.A. Le Gros. Molec. Biol. Cell, 15, 957 (2004)
  19. D. Weib, G. Schneider, B. Niemann, P. Guttmann, D. Rudolph, G. Schmah. Ultramicr., 84, 185 (2000)
  20. M. Bertilson, O. von Hofsten, U. Vogt, A. Holmberg, A.E. Christakou, H.M. Hertz. Opt. Lett., 36 (14), 2728 (2011). DOI: 10.1364/OL.36.002728
  21. E. Fogelqvist, M. Kordel, V. Carannante, B. Onfelt, H.M. Hertz. Sci. Rep., 7, 13433 (2017)
  22. H.M. Hertz, O. von Hofsten, M. Bertilson. J. Str. Biol., 177 (2), 267 (2012)
  23. P.W. Wachulak, A. Torrisi, A. Bartnik, L. Wegrzynski, T. Fok, H. Fiedorowicz. J. Phys.: Conf. Ser., 849, 012050 (2017). DOI: 10.1088/1742-6596/849/1/012050
  24. E. Hanssen, C. Knoechel, M. Dearnley. J. Struct. Biol., 177, 224 (2012)
  25. V. Loconte, J.-H. Chen, M. Cortese, A. Ekman, M.A. Le Gros, C. Larabell, R. Bartenschlager, V. Weinhardt. Cell Reports Methods, 1 (7), 100117 (2021). DOI: 10.1016/j.crmeth.2021.100117
  26. J.-H. Chen, B. Vanslembrouck, V. Loconte, A. Ekman, M. Cortese, R. Bartenschlager, G. McDermott, C.A. Larabell, M.A. Le Gros, V. Weinhardt. STAR Protocols, 3 (1), 101176 (2022). DOI: 10.1016/j.xpro.2022.101176
  27. B. Rosner, F. Koch, F. Doring, V.A. Guzenko, M. Meyer, J.L. Ornelas, A. Spath, R.H. Fink, S. Stanescu, S. Swaraj. Microsc. Microanalysis, 24, 270 (2018). DOI: 10.1017/S1431927618013697
  28. W. Chao, P. Fischer, T. Tyliszczak. Opt. Express, 20, 9777 (2012)
  29. V. De Andrade, V. Nikitin, M. Wojcik. Adv. Mater., 33, 2008653 (2021)
  30. I.V. Malyshev, N.I. Chkhalo. Ultramicroscopy, 202, 76 (2019)
  31. Electronic source. Available at: https://www.euvlitho.com/2018/P22.pdf
  32. N.I. Chkhalo, I.V. Malyshev, A.E. Pestov, V.N. Polkovnikov, N.N. Salashchenko, M.N. Toropov, A.A. Soloviev. Appl. Optics, 55 (3), 619 (2016). DOI: 10.1364/AO.55.000619
  33. N.I. Chkhalo, I.V. Malyshev, A.E. Pestov, V.N. Polkovnikov, N.N. Salashchenko, M.N. Toropov. UFN, 190 (1), 74 (2020) (in Russian). DOI: 10.3367/UFNr.2019.05.038601
  34. N.I. Chkhalo, I.A. Kaskov, I.V. Malyshev. Prec. Eng., 48, 338 (2017)
  35. I.V. Malyshev, D.G. Reunov, N.I. Chkhalo. Opt. Express, 30 (26), 47567 (2022)
  36. A.N. Nechay, A.A. Perekalov, N.N. Salashchenko, N.I. Chkhalo. Opt. i spektr., 129 (2), 146 (2021) (in Russian)
  37. A.V. Vodop'yanov, S.A. Garakhin, I.G. Zabrodin, S.Yu. Zuev, A.Ya. Lopatin, A.N. Nechay, A.E. Pestov, A.A. Perekalov, R.S. Pleshkov, V.N. Polkovnikov, N.N. Salashchenko, R.M. Smertin, B.A. Ulasevich, N.I. Chkhalo. Quantum Electron., 51, 700 (2021). DOI: 10.1070/QEL17598
  38. N.I. Chkhalo, E.B. Kluenkov, A.Ya. Lopati et al. Thin Solid Films, 631, 93 (2017)
  39. M. Toropov, N. Chkhalo, I. Malyshev, N. Salashchenko. Opt. Lett., 47 (14), 3459 (2022)
  40. A.A. Akhsakhalyan, N.I. Chkhalo, N. Kumar, I.V. Malyshev et al. Prec. Eng., 72, 330 (2021)
  41. Electronic source. Available at: https://www.optics-pro.com/botany/lieder-convallaria-maigloeckchen-rhizom-quer-konzentrische-leitbuendel/p,64540
  42. A.D. Pospelov, O.M. Kutova, Y.M. Efremov, A.A. Nekrasova, D.B. Trushina, S.D. Gefter, E.I. Cherkasova, L.B. Timofeeva, P.S. Timashev, A.V. Zvyagin, I.V. Balalaeva. Cells, 12, 2030 (2023). DOI: 10.3390/cells12162030

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru