V.A. Kobzev1, N.G. Chechenin1, C.C. Avtorin1, E.A. Vorobyeva1, A.V. Makunin1
1Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics, Moscow, Russia
Email: va.kobzev@physics.msu.ruchechenin@sinp.msu.ru
The resistance of polymer composite materials based on epoxy resin with multi-walled carbon nanotubes (MWCNTs) as modifying additives under high-velocity impact effects was studied. Samples consisting of layers with different concentrations of MWCNTs in the polymer matrix were synthesized and studied. It was shown that carbon nanotubes improve the resistance of composites to impact effects. The highest values of the impactor kinetic energy absorption capacity are achieved by composites at a concentration of 7 wt.% CNTs ( ~3 times higher than without MWCNT filler). Keywords: Polymer nanocomposites, high- velocity impact, impact resistance.
- M.C. Biswas, A. Chowdhury, Md.M. Hossain, M.K. Hossain. Applications, Drawbacks, and Future Scope of Nanoparticle-BasedPpolymer Composites. In: S.M. Rangappa, J. Parameswaranpillai, T.G.Ya. Gowda, S. Siengchin, M.O. Seydibeyoglu (Eds) Nanoparticle-Based Polymer Composites. Woodhead Publishing Series in Composites Science and Engineering (Elsevier, 2022), p. 243--275. DOI: 10.1016/B978-0-12-824272-8.00002-6
- N.G. Chechenin, P.N. Chernykh, E.A. Vorobyeva, O.S. Timofeev. Appl. Surf. Sci., 275, 217 (2013). DOI: 10.1016/j.apsusc.2012.12.162
- H. Mei, M. Lu, Sh. Zhou, L. Cheng. J. Appl. Polymer Sci., 138 (11), 50033 (2021). DOI: 10.1002/app.50033
- E.A. Vorobyeva, I.V. Makarenko, A.V. Makunin, V.A. Trifonov, N.G. Chechenin. J. Surf. Investigation. X-ray, Synchrotron and Neutron Techniques, 9 (4), 784 (2015). DOI: 10.1134/S1027451015040370
- Th. Hanemann, D.V. Szabo. Materials, 3, 3468 (2010). DOI: 10.3390/ma3063468
- S. Zangana, J. Epaarachchi, W. Ferdous, J. Leng. Int. J. Impact Eng., 137, 103430 (2020)
- A.Yu. Kryukov, A.V. Shumyantsev, K.A. Potapova, A.N. Morozov, A.V. Desyatov. Uspekhi v himii i himicheskoj tekhnologii, XXXIV (4), 31 (2020) (in Russian)
- R. Andrews, D. Jacques, A.M. Rao, T. Rantell, F. Derbyshire, Y. Chen, J. Chen, R.C. Haddon. Appl. Phys. Lett., 75, 1329 (1999)
- A.V. Eletskiy. UFN, 177 (3), 233 (2007) (in Russian)
- M. Mirik, S. Ekinci, M. Tasyurek. J. Chem. Eng. Chem. Res., 2 (9), 799 (2015). DOI: 10.18178/ijmmm.2016.4.4.265
- V.A. Kobzev, N.G. Chechenin, K.A. Bukunov, E.A. Vorobyeva, A.V. Makunin. Mater. Today: Proceed., 5 (12), 26096 (2018). DOI: 10.1016/j.matpr.2018.08.036
- L.S. Novikov, E.N. Voronina. Vzaimodejstvie kosmicheskih apparatov s okruzhayushchej sredoj (KDU, Universitetskaya kniga, M., 2021) (in Russian)
- A.V. Grinevich, A.V. Lavrov. Trudy VIAM, 3 (63), 95 (2018) (in Russian). DOI: 10.18577/2307-6046-2018-0-3-95-102
- S.V. Ahir, A.M. Squires, A.R. Tajbakhsh, E.M. Terentjev. Phys. Rev. B, 73, 085420 (2006)
- A.G. Tkachev, A.P. Kharitonov, G.V. Simbirtseva, L.N. Kharitonova, A.N. Blokhin, T.P. Dyachkova, V.N. Druzhinina, A.V. Maksimkin, D.I. Chukov, V.V. Cherdintsev. Sovremennye problemy nauki i obrazovaniya, 2, (2014) (in Russian). URL: https://science-education.ru/ru/article/view?lid=12620
- A.A. Kychkin, A.K. Kychkin, A.G. Tuisov, M.P. Lebedev, E.S. Ananyeva. Polzunovskij vestnik, 2, 201 (2023) (in Russian)
- R. Rafiee, M.R. Maleki. Comput. Mater. Sci., 63 (0), 261 (2012)
- L. Sun, R.F. Gibson, F. Gordaninejad, J. Suhr. Compos. Sci. Technol., 69 (14), 2392 (2009)
- S. Laurenzi, R. Pastore, G. Giannini, M. Marchetti. Compos. Structur., 99, 62 (2013). DOI: 10.1016/j.compstruct.2012.12.002
- J. Liu, Y. Ye, X. Xie, X. Zhou. Polymers, 14, 3137 (2022). DOI: 10.3390/polym14153137
- T.X. Liu, I.Y. Phang, L. Shen, S.Y. Chow, W-D. Zhang. Macromolecules, 37 (19), 7214 (2004)
- J.N. Coleman, U. Khan, W.J. Blau, Y.K. Gun'ko. Carbon, 44, 1624 (2006). DOI: 10.1016/j.carbon.2006.02.038
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.