Interfacial adhesion in the MWCNT/Ti" system and its improvement using ion beam treatment: a comparative analysis of the effects of argon and helium ions
Knyazev E.V. 1,2, Korusenko P. M. 3,2, Petrova O. V. 3,4, Sokolov D.V.1, Povoroznyuk S.N. 1,2, Ivlev K.E. 1, Bakina K.A.3,4, Gaas V.A.3, Vinogradov A. S. 3
1Omsk Scientific Center, Siberian Branch, Russian Academy of Sciences, Omsk, Russia
2Omsk State Technical University, Omsk, Russia
3St. Petersburg State University, St. Petersburg, Russia
4Komi Science Centre of the Ural Division of the Russian Academy of Sciences, Syktyvkar, Russia
Email: korusenko_petr@mail.ru, asvinograd@gmail.com

PDF
A comparative study of the adhesion of multi-walled carbon nanotubes (MWCNTs) to a titanium surface, depending on the modes of irradiation with He+ and Ar+ ions of the "MWCNT/Ti" system, was carried out using atomic force microscopy and X-ray photoelectron spectroscopy. A quantitative assessment of the adhesion force at the interface, performed using atomic force microscopy, demonstrated its significant increase as a result of the treatment of "MWCNT/Ti" with high-energy helium and argon ions. This increase in adhesion force was found to depend on the time of ion irradiation and the type of ions. The nature of chemical bonding between MWCNTs and the surface of a titanium substrate, which causes an increase in the adhesion of nanotubes to titanium during ion irradiation, was studied using X-ray photoelectron spectroscopy. It has been established that this bonding is mainly the result of the formation of chemical C-O-Ti bonds between titanium and carbon atoms with the participation of oxygen atoms of oxygen-containing functional groups, which are localized on defects in the tube walls formed during ion irradiation. With long-term (30 min) irradiation with argon ions, weak effects of direct bonding between titanium and carbon atoms are observed in the photoelectron spectra, which also enhances interfacial adhesion. Keywords: multi-walled carbon nanotubes (MWCNTs), irradiation with helium and argon ions, interfacial adhesion, atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS).
  1. Yu.A. Polozhentseva, M.V. Novozhilova, V.A. Bykov, M.P. Karushev. Tech. Phys. Lett., 46 (9), 913 (2020). DOI: 10.1134/S1063785020090278
  2. M.E. Kompan, V.G. Malyshkin, V.P. Kuznetsov, V.A. Krivchenko. Tech. Phys. Lett., 43 (2), 177 (2017). DOI: 10.1134/S1063785017020067
  3. R. Amin, P. Ramesh Kumar, I. Belharouak. Carbon Nanotubes --- Redefining the World of Electronics (2021)
  4. H. Kim, J.Y. Cheong, B. Hwang. J. Natural Fibers, 20 (2), (2023)
  5. D. Bresser, D. Buchholz, A. Moretti, A. Varzi, S. Passerini. Energy Environ Sci., 11 (11), 3096 (2018). DOI: 10.1039/C8EE00640G
  6. A.S. Istomina, O.V. Bushkova. Electrochem. Energetics, 20 (3), 115 (2020). DOI: 10.18500/1608-4039-2020-20-3-115-131
  7. S.N. Eliseeva, M.A. Kamenskii, E.G. Tolstopyatova, V.V. Kondratiev. Energies (Basel), 13 (9), 2163 (2020). DOI: 10.3390/en13092163
  8. E. V. Knyazev, P. M. Korusenko, R. V. Makushenko, S. N. Nessov, S. N. Povoroznyuk, K. E. Ivlev, D. V. Sivkov, O. V. Petrova, A. S. Vinogradov. Pisma v JTF, 50 (9), 6 (2024) (in Russian)
  9. H.-C. Su, C.-H. Chen, Y.-C. Chen, D.-J. Yao, H. Chen, Y.-C. Chang, T.-R. Yew. Carbon NY., 48 (3), 805 (2010). DOI: 10.1016/j.carbon.2009.10.032
  10. A. Santidrian, O. Sanahuja, B. Villacampa, J.L. Diez, A.M. Benito, W.K. Maser, E. Munoz, A. Anson-Casaos. ACS Omega, 4 (2), 2804 (2019). DOI: 10.1021/acsomega.8b03475
  11. I. Lahiri, D. Lahiri, S. Jin, A. Agarwal, W. Choi. ACS Nano, 5 (2), 780 (2011). DOI: 10.1021/nn102900z
  12. S.W. Lee, K.K. Kim, Y. Cui, S.C. Lim, Y.W. Cho, S.M. Kim, Y.H. Lee. Nano, 05 (03), 133 (2010). DOI: 10.1142/S1793292010002025
  13. M. Ishikawa, R. Harada, N. Sasaki, K. Miura. Phys. Rev. B, 80 (19), 193406 (2009). DOI: 10.1103/PhysRevB.80.193406
  14. A. Bouhamed, A.M. Kia, S. Naifar, V. Dzhagan, C. Muller, D.R.T. Zahn, S. Choura, O. Kanoun. Appl. Surf. Sci., 422, 420 (2017). DOI: 10.1016/j.apsusc.2017.05.177
  15. R.E. Marrero Rosa, D.J. Corr, H.D. Espinosa, S.P. Shah. Cem. Concr. Compos, 138, 104953 (2023). DOI: 10.1016/j.cemconcomp.2023.104953
  16. C.W. Jang, Y.T. Byun, D.H. Woo, S. Lee, Y.M. Jhon. J. Korean Phys. Society, 61 (12), 2096 (2012). DOI: 10.3938/jkps.61.2096
  17. S.C. Lim, H.K. Choi, H.J. Jeong, Y. Il Song, G.Y. Kim, K.T. Jung, Y.H. Lee. Carbon NY., 44 (13), 2809 (2006). DOI: 10.1016/j.carbon.2006.03.030
  18. O.A. Ageev, Yu.F. Blinov, M.V. Il'ina, O.I. Il'in, V.A. Smirnov, O.G. Tsukanova. Phys. Solid State, 58 (2), 309 (2016). DOI: 10.1134/S1063783416020037
  19. O.I. Il'in, M.V Il'ina, N.N. Rudyk, A.A. Fedotov. IOP Conf. Ser. Mater. Sci. Eng., 443 (1), 012009 (2018). DOI: 10.1088/1757-899X/443/1/012009
  20. M.C. Strus, L. Zalamea, A. Raman, R.B. Pipes, C.V. Nguyen, E.A. Stach. Nano Lett., 8 (2), 544 (2008). DOI: 10.1021/nl0728118
  21. P.M. Korusenko, E.V. Knyazev, O.V. Petrova, D.V. Sokolov, S.N. Povoroznyuk, K.E. Ivlev, K.A. Bakina, V.A. Gaas, A.S. Vinogradov. Nanomaterials, 14 (8), (2024). DOI: 10.3390/nano14080699
  22. D.V. Krasnikov, A.N. Shmakov, V.L. Kuznetsov, A.V. Ishchenko. J. Structural Chem., 57 (7), 1436 (2016). DOI: 10.1134/S0022476616070192
  23. J.F. Ziegler, M.D. Ziegler, J.P. Biersack. Nucl. Instrum. Methods Phys. Res. B, 268 (11-12), 1818 (2010). DOI: 10.1016/j.nimb.2010.02.091
  24. N. Fairley, V. Fernandez, M. Richard-Plouet, C. Guillot-Deudon, J. Walton, E. Smith, D. Flahaut, M. Greiner, M. Biesinger, S. Tougaard, D. Morgan, J. Baltrusaitis. Appl. Surf. Sci. Adv., 5, 100112:1 (2021). DOI: 10.1016/j.apsadv.2021.100112
  25. P. Korusenko, K. Kharisova, E. Knyazev, O. Levin, A. Vinogradov, E. Alekseeva. Appl. Sci., 13 (19), 11057:1 (2023). DOI: 10.3390/app131911057
  26. S.N. Nesov, P.M. Korusenko, V.A. Sachkov, V.V. Bolotov, S.N. Povoroznyuk. J. Phys. Chem. Sol., 169, 110831 (2022). DOI: 10.1016/j.jpcs.2022.110831
  27. P.M. Korusenko, S.N. Nesov, A.A. Iurchenkova, E.O. Fedorovskaya, V.V. Bolotov, S.N. Povoroznyuk, D.A. Smirnov, A.S. Vinogradov. Nanomaterials, 11 (9), 2163 (2021). DOI: 10.3390/nano11092163
  28. H. Belhadj, I. Moulefera, L. Sabantina, A. Benyoucef. Fibers, 10 (5), 46 (2022). DOI: 10.3390/fib10050046
  29. M. Ivanovskaya, E. Ovodok, D. Kotsikau, I. Azarko, M. Micusik, M. Omastova, V. Golovanov. RSC Adv., 10 (43), 25602 (2020). DOI: 10.1039/D0RA02959A
  30. J.O. Olowoyo, M. Kumar, S.L. Jain, J.O. Babalola, A.V. Vorontsov, U. Kumar. J. Phys. Chem. C., 123 (1), 367 (2019). DOI: 10.1021/acs.jpcc.8b07894
  31. Y. Eda, T. Manaka, T. Hanawa, P. Chen, M. Ashida, K. Noda. Surf. Interface Analys., 54 (8), 892 (2022). DOI: 10.1002/sia.7102
  32. X. Zhang, J. Zhou, H. Song, X. Chen, Yu.V. Fedoseeva, A.V. Okotrub, L.G. Bulusheva. ACS Appl. Mater. Interfaces, 6 (19), 17236 (2014). DOI: 10.1021/am505186a
  33. D.V. Sivkov, O.V. Petrova, S.V. Nekipelov, A.S. Vinogradov, R.N. Skandakov, S.I. Isaenko, A.M. Ob'edkov, B.S. Kaverin, I.V. Vilkov, R.I. Korolev, V.N. Sivkov. Nanomaterials, 11 (11), 2993 (2021). DOI: 10.3390/nano11112993
  34. C.-H. Wu, C.-Y. Kuo, S.-T. Chen. Environ Technol., 34 (17), 2513 (2013). DOI: 10.1080/09593330.2013.774058
  35. A. Felten, I. Suarez-Martinez, X. Ke, G. Van Tendeloo, J. Ghijsen, J. Pireaux, W. Drube, C. Bittencourt, C.P. Ewels. Chem. Phys. Chem., 10 (11), 1799 (2009). DOI: 10.1002/cphc.200900193
  36. S.A. Zikalala, M.B. Chabalala, N.N. Gumbi, N.J. Coville, B.B. Mamba, B.K. Mutuma, E.N. Nxumalo. RSC Adv., 11 (12), 6748 (2021). DOI: 10.1039/D0RA08191D
  37. W. Ye, Q. Chi, H. Zhou, P. Gao. Int. J. Hydrogen Energy, 43 (41), 19164 (2018). DOI: 10.1016/j.ijhydene.2018.08.166

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru