Registration of pulsed terahertz radiation with uncooled matrix microbolometric detectors
Dem’yanenko M. A.
1, Marchishin I. V.
1, Sheglov D. V.
1, Startsev V. V.
21Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
2Joint-Stock Company “Scientific and Production Association “Orion” (JSC “SPA “Orion”), Moscow, Russia
Email: demyanenko@isp.nsc.ru
The response of uncooled matrix microbolometric detectors with a thin metal absorber to pulsed terahertz radiation is studied depending on the pulse duration, its repetition frequency, thermal conductivity and bolometer thermal relaxation time, which change with increasing gas pressure in the receiver housing, as well as on the polarization of terahertz radiation. It is shown that the peak value of the microbolometer signal weakly depends on thermal conductivity if the duration of the radiation pulses is less than the bolometer thermal relaxation time. Under the opposite condition, the peak value of the microbolometer signal is inversely proportional to the thermal conductivity value. The manufactured and investigated detectors at a wavelength of 100 μm are characterized by a minimum detectable power of 1.4·10-9 W and a minimum detectable energy of 2.5·10-11 J. Keywords: Thermal conductivity, thermal relaxation time, minimum detectable energy.
- A. Rogalski. Progr. Quant. Electron., 27 (2-3), 59 (2003). DOI: 10.1016/S0079-6727(02)00024-1
- A. Rogalski. Progr. Quant. Electron., 36 (2-3), 342 (2012). DOI: 10.1016/j.pquantelec.2012.07.001
- A. Rogalski. Opto--Electron. Rev., 21 (4), 406 (2013). DOI: 10.2478/s11772-013-0110-x
- A.W.M. Lee, B.S. Williams, S. Kumar, Q. Hu, J.L. Reno. IEEE Photon. Technol. Lett., 18 (13), 1415 (2006). DOI: 10.1109/LPT.2006.877220
- N. Oda. C.R. Physiq., 11 (7-8), 496 (2010). DOI: 10.1016/j.crhy.2010.05.001
- M.A. Dem'yanenko, D.G. Esaev, B.A. Knyazev, G.N. Kulipanov, N.A. Vinokurov. Appl. Phys. Lett., 92 (13), 131116 (2008). DOI: 10.1063/1.2898138
- N. Nemoto, N. Kanda, R. Imai, K. Konishi, M. Miyoshi, S. Kurashina, T. Sasaki, N. Oda, M. Kuwata-Gonokami. IEEE Trans. Terahertz Sci. Technol., 6 (2), 175 (2016). DOI: 10.1109/TTHZ.2015.2508010
- F. Simoens, J. Meilhan. Philosophical Transactions Royal Society of London A: Mathematical, Physical and Engineering Sciences, 372 (2012), 20130111 (2014). DOI: 10.1098/rsta.2013.0111
- F. Simoens, J. Meilhan, J.-A. Nicolas. J. Infrared Milli Terahz Waves, 36 (10), 961 (2015). DOI: 10.1007/s10762-015-0197-x
- Y. Amarasinghe, W. Zhang, R. Zhang, D.M. Mittleman, J. Ma. J. Infrared, Millimeter, Terahertz Waves, 41 (2), 215 (2020). DOI: 10.1007/s10762-019-00647-4
- Y. Yang, A. Shutler, D. Grischkowsky. Opt. Express, 19 (9), 8830 (2011). DOI: 10.1364/OE.19.008830
- G.S. Kent, B.R. Clemesha, R.W. Wright. J. Atmospheric Terrestrial Phys., 29 (2), 169 (1967). DOI: 10.1016/0021-9169(67)90131-6
- G.S. Kent, R.W. Wright. J. Atmospheric Terrestrial Phys., 32 (5), 917 (1970). DOI: 10.1016/0021-9169(70)90036-X
- G.-R. Kim, T.-I. Jeon, D. Grischkowsky. Opt. Express, 25 (21), 25422 (2017). DOI: 10.1364/OE.25.025422
- Y. Yang, M. Mandehgar, D. Grischkowsky. Opt. Express, 20 (24), 26208 (2012). DOI: 10.1364/OE.20.026208
- J.M. Dai, X.F. Lu, J. Liu, I.C. Ho, N. Karpowicz, X.-C. Zhang. Terahertz Sci. Technol., 2 (4), 131 (2009). DOI: 10.11906/TST.131-143.2009.12.14
- L.-Z. Tang, J.-Y. Zhao, Z.-H. Dong, Z.-H. Liu, W.-T. Xiong, Y.-C. Hui, A. Shkurinov, Y. Peng, Y.-M. Zhu. Opt. Laser Technol., 141, 107102 (2021). DOI: 10.1016/j.optlastec.2021.107102
- G.-R. Kim, K. Moon, K.H. Park, J.F. O'Hara, D. Grischkowsky, T.-I. Jeon. Opt. Express, 27 (20), 27514 (2019). DOI: 10.1364/OE.27.027514
- D.S. Sitnikov, S.A. Romashevskiy, A.A. Pronkin, I.V. Ilina. J. Physics: Conf. Ser., 1147, 012061 (2019). DOI: 10.1088/1742-6596/1147/1/012061
- V.L. Granatsteina, G.S. Nusinovich. J. Appl. Phys., 108 (6), 063304 (2010). DOI: 10.1063/1.3484044
- G.S. Nusinovich, D.G. Kashyn, Y. Tatematsu, T. Idehara. Phys. Plasmas, 21 (1), 013108 (2014). DOI: 10.1063/1.4862779
- C.W. Berry, M.R. Hashemi, M. Jarrahi. Appl. Phys. Lett., 104 (8), 081122 (2014). DOI: 10.1063/1.4866807
- D.S. Kim, D.S. Citrin. Appl. Phys. Lett., 88 (16), 161117 (2006). DOI: 10.1063/1.2196480
- H. Hirori, A. Doi, F. Blanchard, K. Tanaka. Appl. Phys. Lett., 98 (8), 091106 (2011). DOI: 10.1063/1.3560062
- M.A. Belkin, F. Capasso. Phys. Scripta, 90 (11), 118002 (2015). DOI: 10.1088/0031-8949/90/11/118002
- L. Li, L. Chen, J. Zhu, J. Freeman, P. Dean, A. Valavanis, A.G. Davies, E.H. Linfield. Electron. Lett., 50 (4), 309 (2014). DOI: 10.1049/el.2013.4035
- Q. Lu, M. Razeghi. Photonics, 3 (3), 42 (2016). DOI: 10.3390/photonics3030042
- G. Liao, Y. Li, H. Liu, G.G. Scott, D. Neely, Y. Zhang, B. Zhu, Z. Zhang, C. Armstrong, E. Zemaityte, P. Bradford, P.G. Huggard, D.R. Rusby, P. McKenna, C.M. Brenner, N.C. Woolsey, W. Wang, Z. Sheng, J. Zhang. Proc. National. Acad. Sci. USA, 116 (10), 3994 (2019). DOI: 10.1073/pnas.1815256116
- X. Wu, D. Kong, S. Hao, Y. Zeng, X. Yu, B. Zhang, M. Dai, S. Liu, J. Wang, Z. Ren, S. Chen, J. Sang, K. Wang, D. Zhang, Z. Liu, J. Gui, X. Yang, Y. Xu, Y. Leng, Y. Li, L. Song, Y. Tian, R. Li. Adv. Mater., 35 (23), 2208947 (2023). DOI: 10.1002/adma.202208947
- B. Zhang, Z. Ma, J. Ma, X. Wu, C. Ouyang, D. Kong, T. Hong, X. Wang, P. Yang, L. Chen, Y. Li, J. Zhang. Laser Photon. Rev., 15 (3), 2000295 (2021). DOI: 10.1002/lpor.202000295
- Z. Yu, N. Zhang, J. Wang, Z. Dai, C. Gong, L. Lin, L. Guo, W. Liu. Opto-Electron. Adv., 5 (9), 210065 (2022). DOI: 10.29026/oea.2022.210065
- V.L. Bratman, A.A. Bogdashov, G.G. Denisov, M.Yu. Glyavin, Yu.K. Kalynov, A.G. Luchinin, V.N. Manuilov, V.E. Zapevalov, N.A. Zavolsky, V.G. Zorin. J. Infrared Milli Terahz Waves, 33 (7), 715 (2012). DOI: 10.1007/s10762-012-9898-6
- G.S. Nusinovich, R. Pu, T.M. Antonsen Jr., O.V. Sinitsyn, J. Rodgers, A. Mohamed, J. Silverman, M. Al-Sheikhly, Y.S. Dimant, G.M. Milikh, M.Yu. Glyavin, A.G. Luchinin, E.A. Kopelovich, V.L. Granatstein. J. Infrared Milli Terahz Waves, 32 (3), 380 (2011). DOI: 10.1007/s10762-010-9708-y
- M.A. Dem'yanenko, V.V. Startsev. Tech. Phys., 67 (3), 347 (2022). DOI: 10.21883/TP.2022.03.53266.190-21
- V.Sh. Aliev, M.A. Dem'yanenko, D.G. Esaev, I.V. Marchishin, V.N. Ovsyuk, B.I. Fomin. Uspekhi prikladnoi fiziki, 1 (4), 471 (2013) (in Russian)
- M.A. Dem'yanenko, B.I. Fomin, L.L. Vasilieva, S.A. Volkov, I.V. Marchishin, D.G. Esaev, V.N. Ovsyuk, V.L. Dshkhunyan, E.B. Volodin, A.V. Ermolov, P.P. Usov, V.P. Chesnokov, Yu.S. Chetverov, P.N. Kudryavtsev, A.E. Zdobnikov, A.A. Ignatov. Prikladnaya fizika, 4, 124 (2010). (in Russian)
- N. Oda, H. Yoneyama, T. Sasaki, M. Sanoa, S. Kurashina, I. Hosako, N. Sekine, T. Sudoh, T. Irie. Proc. SPIE, 6940, 69402Y (2008). DOI: 10.1117/12.781630
- A.J.L. Adam, I. Kavsalynas, J.N. Hovenier, T.O. Klaassen, J.R. Gao, E.E. Orlova, B.S. Williams, S. Kumar, Q. Hu, J.L. Reno. Appl. Phys. Lett., 88 (15), 151105 (2006). DOI: 10.1063/1.2194889
- E.E. Orlova, J.N. Hovenier, T.O. Klaassen, I. Kavsalynas, A.J.L. Adam, J.R. Gao, T.M. Klapwijk, B.S. Williams, S. Kumar, Q. Hu, J.L. Reno. Phys. Rev. Lett., 96 (17), 173904 (2006). DOI: 10.1103/PhysRevLett.96.173904
- H. Wu, S. Grabarnik, A. Emadi, G. de Graaf, R.F. Wolffenbuttel. J. Micromech. Microeng., 19 (7), 074022 (2009). DOI: 10.1088/0960-1317/19/7/074022
- J. Dupuis, E. Fourmond, D. Ballutaud, N. Bererd, M. Lemiti. Thin Solid Films, 519 (4), 1325 (2010). DOI: 10.1016/j.tsf.2010.09.036
- M.A. Dem'yanenko. J. Opt. Technol., 84 (1), 34 (2017). DOI: 10.1364/JOT.84.000034
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.