Ilinskiy A.V.1, Castro R.2, Nabiullina L.A.3, Shadrin E.B.1
1Ioffe Institute, St. Petersburg, Russia
2Herzen State Pedagogical University of Russia, St. Petersburg, Russia
3Fire and Rescue College and Rescue Training Center, Saint-Petersburg, Russia
Email: ilinskiy@mail.ioffe.ru, recastro@mail.ru, lia-nabiullina@yandex.ru, shadr.solid@mail.ioffe.ru
In the frequency range 10-2-108 Hz at a temperature of 300 K, the dielectric spectra of undoped and doped Ni, Mn, Co, Cu, Fe, Mo high-resistivity (rho>1010 Ohm · m) sillenite crystals (Bi12SiO20) were studied. It is shown that the detected features of the spectra are due to the response of an array of free electrons, the dark concentration of which is determined by the presence of donor or acceptor impurities. The results of calculating dielectric spectra within the framework of the Debye theory, as well as within the framework of a complicated theory using the function G(tau) of the distribution of numbers of relaxers over their relaxation times, are presented. The relaxation times of the response to the action of a probing electric field are estimated and it is shown that they are determined by the Maxwellian relaxation times for electrons. The parameters of the function G(tau) are determined. It is shown that a significant variation in relaxation times for different impurities is due, in addition to differences in electron concentrations, to the dependence of the electron drift mobility on the parameters of traps in the presence of which charge transfer occurs. Key words: dielectric spectra, dielectric loss tangent, Debye distribution, charge transfer, sillenite crystals, Maxwellian relaxation time. Keywords: dielectric spectra, dielectric loss tangent, Debye distribution, charge transfer, sillenite crystals, Maxwellian relaxation time.
- P. Lemaire, M. Georges. In: Photorefractive Materials and Their Applications 3. Springer Series in Optical Sciences 115. Springer. N.Y. 223 (2007)
- A.A. Kamshilin, R.V. Romashko, Y.N. Kulchin. J. Appl. Phys. 105, 3, 1381 (2009)
- A.A. Kolegov, L.A. Kabanova. FTT: Sb. mater. XII Ros. nauch. stud. konf. Tomsk, 163 (2010). (in Russian)
- N.V. Nikonorov, V.M. Petrov. Optika i spektroskopiya 129, 4, 385 (2021). (in Russian)
- C. Thizy, Y. Stockman, P. Lemaire, Y. Houbrechts, A. Mazzoli, M. Georges, E. Mazy, I. Tychon, D. Doyle, G. Ulbrich. J. Photorefractiv. Effects, Mater. Dev. 707 (2005)
- M. Georges, O. Dupont, I. Zayer, Ph. Lemaire, T. Dewandre. J. Photorefractiv. Effects, Mater. Dev. 456 (2003)
- A.V. Il'insky. Dokt. dis., Dinamika fotoindutsirovannykh zaryadov i polej v vysokoomnykh kristallakh. L. (1992). 262 s. (in Russian)
- S.N. Mustafaeva, S.M. Asadov. Int. Workshop on Impedance Spectroscopy (IWIS). Chemnitz, Germany (2022). P. 102. doi: 10.1109/IWIS57888.2022.9975115
- M.M. Abdullah. Kuwait J. Science 49, 2, 12 (2022)
- N.I. Sorokin, V.M. Kanevsky. FTT 65, 9 1538 (2023). (in Russian)
- P. Prem Kiran. Asian J. Physics 30, 6, 917 (2021)
- P. Petkova, P. Vasilev. J. Sci. Appl. Res. 5, 146,(2014)
- M. Isik, S. Delice, H. Nasser, N.M. Gasanly, N.H. Darvishov, V.E. Bagiev. J. Mater. Sci. Semicond. Proc. 120, 105286 (2020)
- P. Debaj. Izbrannye trudy. Stat'i 1909-1965. Nauka, L., (1987). 46 s. (in Russian)
- V.S. Vonsovsky, M.I. Katznel'son. Kvantovaya fizika tverdogo tela. Nauka, M. (1983). 391 s. (in Russian)
- P. Dirak. UFN 129, 4, 681 (1979). (in Russian)
- A.V. Il'inskij, E.B. Shadrin. FTT 66, 5, 708 (2024). (in Russian)
- F. Kremer, A. Schonhals, W. Broadband. Dielectric Spectroscopy. Springer-Verlag (2002). 118 p
- Ammar Sarem, Talal Khalass. Tishreen Univer. J. Res. Sci. Studies. Basic Sci. Ser. 31, 1, 189 (2009)
- Y. Hu, D.C. Sinclair. Chem. Mater. 25, 48 (2013)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.